update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wnut_17
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: bert-small-finetuned-xglue-ner-longer50
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: wnut_17
|
20 |
+
type: wnut_17
|
21 |
+
config: wnut_17
|
22 |
+
split: train
|
23 |
+
args: wnut_17
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.6182136602451839
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.4222488038277512
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.5017768301350392
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9252207821997935
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# bert-small-finetuned-xglue-ner-longer50
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [muhtasham/bert-small-finetuned-xglue-ner-longer20](https://huggingface.co/muhtasham/bert-small-finetuned-xglue-ner-longer20) on the wnut_17 dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.7236
|
47 |
+
- Precision: 0.6182
|
48 |
+
- Recall: 0.4222
|
49 |
+
- F1: 0.5018
|
50 |
+
- Accuracy: 0.9252
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 8
|
71 |
+
- eval_batch_size: 8
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 30
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 425 | 0.5693 | 0.5232 | 0.4581 | 0.4885 | 0.9268 |
|
82 |
+
| 0.0032 | 2.0 | 850 | 0.6191 | 0.5281 | 0.4498 | 0.4858 | 0.9260 |
|
83 |
+
| 0.0035 | 3.0 | 1275 | 0.7045 | 0.6011 | 0.4055 | 0.4843 | 0.9241 |
|
84 |
+
| 0.0056 | 4.0 | 1700 | 0.6715 | 0.5571 | 0.4438 | 0.4940 | 0.9261 |
|
85 |
+
| 0.004 | 5.0 | 2125 | 0.6537 | 0.5645 | 0.4294 | 0.4878 | 0.9256 |
|
86 |
+
| 0.0063 | 6.0 | 2550 | 0.6646 | 0.5659 | 0.4211 | 0.4829 | 0.9255 |
|
87 |
+
| 0.0063 | 7.0 | 2975 | 0.6269 | 0.5306 | 0.4354 | 0.4783 | 0.9238 |
|
88 |
+
| 0.003 | 8.0 | 3400 | 0.7235 | 0.5921 | 0.3959 | 0.4746 | 0.9238 |
|
89 |
+
| 0.0051 | 9.0 | 3825 | 0.6334 | 0.5330 | 0.4450 | 0.4850 | 0.9237 |
|
90 |
+
| 0.0047 | 10.0 | 4250 | 0.6408 | 0.5893 | 0.4462 | 0.5078 | 0.9271 |
|
91 |
+
| 0.004 | 11.0 | 4675 | 0.6721 | 0.5840 | 0.4282 | 0.4941 | 0.9255 |
|
92 |
+
| 0.0051 | 12.0 | 5100 | 0.6853 | 0.5795 | 0.4318 | 0.4949 | 0.9258 |
|
93 |
+
| 0.0038 | 13.0 | 5525 | 0.6870 | 0.5789 | 0.4211 | 0.4875 | 0.9249 |
|
94 |
+
| 0.0038 | 14.0 | 5950 | 0.6931 | 0.6032 | 0.4091 | 0.4875 | 0.9241 |
|
95 |
+
| 0.0033 | 15.0 | 6375 | 0.6502 | 0.5965 | 0.4510 | 0.5136 | 0.9266 |
|
96 |
+
| 0.0032 | 16.0 | 6800 | 0.6941 | 0.6126 | 0.4426 | 0.5139 | 0.9267 |
|
97 |
+
| 0.0042 | 17.0 | 7225 | 0.6603 | 0.5856 | 0.4462 | 0.5064 | 0.9266 |
|
98 |
+
| 0.0016 | 18.0 | 7650 | 0.6870 | 0.6121 | 0.4474 | 0.5169 | 0.9273 |
|
99 |
+
| 0.0028 | 19.0 | 8075 | 0.6922 | 0.5906 | 0.4366 | 0.5021 | 0.9250 |
|
100 |
+
| 0.0023 | 20.0 | 8500 | 0.7096 | 0.6089 | 0.4246 | 0.5004 | 0.9250 |
|
101 |
+
| 0.0023 | 21.0 | 8925 | 0.6763 | 0.5772 | 0.4426 | 0.5010 | 0.9261 |
|
102 |
+
| 0.0025 | 22.0 | 9350 | 0.6880 | 0.5696 | 0.4258 | 0.4873 | 0.9241 |
|
103 |
+
| 0.0018 | 23.0 | 9775 | 0.6759 | 0.5836 | 0.4426 | 0.5034 | 0.9259 |
|
104 |
+
| 0.0017 | 24.0 | 10200 | 0.7044 | 0.6198 | 0.4270 | 0.5057 | 0.9262 |
|
105 |
+
| 0.0018 | 25.0 | 10625 | 0.6948 | 0.6040 | 0.4306 | 0.5028 | 0.9245 |
|
106 |
+
| 0.0018 | 26.0 | 11050 | 0.6930 | 0.5948 | 0.4354 | 0.5028 | 0.9255 |
|
107 |
+
| 0.0018 | 27.0 | 11475 | 0.7077 | 0.6048 | 0.4246 | 0.4989 | 0.9250 |
|
108 |
+
| 0.0023 | 28.0 | 11900 | 0.7127 | 0.6103 | 0.4270 | 0.5025 | 0.9252 |
|
109 |
+
| 0.0013 | 29.0 | 12325 | 0.7253 | 0.6243 | 0.4234 | 0.5046 | 0.9254 |
|
110 |
+
| 0.0015 | 30.0 | 12750 | 0.7236 | 0.6182 | 0.4222 | 0.5018 | 0.9252 |
|
111 |
+
|
112 |
+
|
113 |
+
### Framework versions
|
114 |
+
|
115 |
+
- Transformers 4.21.1
|
116 |
+
- Pytorch 1.12.1+cu113
|
117 |
+
- Datasets 2.4.0
|
118 |
+
- Tokenizers 0.12.1
|