muhtasham commited on
Commit
cbc93c8
1 Parent(s): a472724

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +118 -0
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wnut_17
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-small-finetuned-xglue-ner-longer50
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wnut_17
20
+ type: wnut_17
21
+ config: wnut_17
22
+ split: train
23
+ args: wnut_17
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.6182136602451839
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.4222488038277512
31
+ - name: F1
32
+ type: f1
33
+ value: 0.5017768301350392
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9252207821997935
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # bert-small-finetuned-xglue-ner-longer50
43
+
44
+ This model is a fine-tuned version of [muhtasham/bert-small-finetuned-xglue-ner-longer20](https://huggingface.co/muhtasham/bert-small-finetuned-xglue-ner-longer20) on the wnut_17 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.7236
47
+ - Precision: 0.6182
48
+ - Recall: 0.4222
49
+ - F1: 0.5018
50
+ - Accuracy: 0.9252
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 30
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 425 | 0.5693 | 0.5232 | 0.4581 | 0.4885 | 0.9268 |
82
+ | 0.0032 | 2.0 | 850 | 0.6191 | 0.5281 | 0.4498 | 0.4858 | 0.9260 |
83
+ | 0.0035 | 3.0 | 1275 | 0.7045 | 0.6011 | 0.4055 | 0.4843 | 0.9241 |
84
+ | 0.0056 | 4.0 | 1700 | 0.6715 | 0.5571 | 0.4438 | 0.4940 | 0.9261 |
85
+ | 0.004 | 5.0 | 2125 | 0.6537 | 0.5645 | 0.4294 | 0.4878 | 0.9256 |
86
+ | 0.0063 | 6.0 | 2550 | 0.6646 | 0.5659 | 0.4211 | 0.4829 | 0.9255 |
87
+ | 0.0063 | 7.0 | 2975 | 0.6269 | 0.5306 | 0.4354 | 0.4783 | 0.9238 |
88
+ | 0.003 | 8.0 | 3400 | 0.7235 | 0.5921 | 0.3959 | 0.4746 | 0.9238 |
89
+ | 0.0051 | 9.0 | 3825 | 0.6334 | 0.5330 | 0.4450 | 0.4850 | 0.9237 |
90
+ | 0.0047 | 10.0 | 4250 | 0.6408 | 0.5893 | 0.4462 | 0.5078 | 0.9271 |
91
+ | 0.004 | 11.0 | 4675 | 0.6721 | 0.5840 | 0.4282 | 0.4941 | 0.9255 |
92
+ | 0.0051 | 12.0 | 5100 | 0.6853 | 0.5795 | 0.4318 | 0.4949 | 0.9258 |
93
+ | 0.0038 | 13.0 | 5525 | 0.6870 | 0.5789 | 0.4211 | 0.4875 | 0.9249 |
94
+ | 0.0038 | 14.0 | 5950 | 0.6931 | 0.6032 | 0.4091 | 0.4875 | 0.9241 |
95
+ | 0.0033 | 15.0 | 6375 | 0.6502 | 0.5965 | 0.4510 | 0.5136 | 0.9266 |
96
+ | 0.0032 | 16.0 | 6800 | 0.6941 | 0.6126 | 0.4426 | 0.5139 | 0.9267 |
97
+ | 0.0042 | 17.0 | 7225 | 0.6603 | 0.5856 | 0.4462 | 0.5064 | 0.9266 |
98
+ | 0.0016 | 18.0 | 7650 | 0.6870 | 0.6121 | 0.4474 | 0.5169 | 0.9273 |
99
+ | 0.0028 | 19.0 | 8075 | 0.6922 | 0.5906 | 0.4366 | 0.5021 | 0.9250 |
100
+ | 0.0023 | 20.0 | 8500 | 0.7096 | 0.6089 | 0.4246 | 0.5004 | 0.9250 |
101
+ | 0.0023 | 21.0 | 8925 | 0.6763 | 0.5772 | 0.4426 | 0.5010 | 0.9261 |
102
+ | 0.0025 | 22.0 | 9350 | 0.6880 | 0.5696 | 0.4258 | 0.4873 | 0.9241 |
103
+ | 0.0018 | 23.0 | 9775 | 0.6759 | 0.5836 | 0.4426 | 0.5034 | 0.9259 |
104
+ | 0.0017 | 24.0 | 10200 | 0.7044 | 0.6198 | 0.4270 | 0.5057 | 0.9262 |
105
+ | 0.0018 | 25.0 | 10625 | 0.6948 | 0.6040 | 0.4306 | 0.5028 | 0.9245 |
106
+ | 0.0018 | 26.0 | 11050 | 0.6930 | 0.5948 | 0.4354 | 0.5028 | 0.9255 |
107
+ | 0.0018 | 27.0 | 11475 | 0.7077 | 0.6048 | 0.4246 | 0.4989 | 0.9250 |
108
+ | 0.0023 | 28.0 | 11900 | 0.7127 | 0.6103 | 0.4270 | 0.5025 | 0.9252 |
109
+ | 0.0013 | 29.0 | 12325 | 0.7253 | 0.6243 | 0.4234 | 0.5046 | 0.9254 |
110
+ | 0.0015 | 30.0 | 12750 | 0.7236 | 0.6182 | 0.4222 | 0.5018 | 0.9252 |
111
+
112
+
113
+ ### Framework versions
114
+
115
+ - Transformers 4.21.1
116
+ - Pytorch 1.12.1+cu113
117
+ - Datasets 2.4.0
118
+ - Tokenizers 0.12.1