muhtasham commited on
Commit
980b013
1 Parent(s): f61a9b6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - glue
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: bert-small-finetuned-glue-rte
11
+ results:
12
+ - task:
13
+ name: Text Classification
14
+ type: text-classification
15
+ dataset:
16
+ name: glue
17
+ type: glue
18
+ config: rte
19
+ split: train
20
+ args: rte
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.631768953068592
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # bert-small-finetuned-glue-rte
31
+
32
+ This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the glue dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 2.8715
35
+ - Accuracy: 0.6318
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 2e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 16
59
+ - total_train_batch_size: 128
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 50
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | No log | 2.62 | 50 | 1.8285 | 0.6318 |
69
+ | No log | 5.26 | 100 | 2.0806 | 0.6462 |
70
+ | No log | 7.87 | 150 | 2.1598 | 0.6282 |
71
+ | No log | 10.51 | 200 | 2.2774 | 0.6318 |
72
+ | No log | 13.15 | 250 | 2.3676 | 0.6245 |
73
+ | No log | 15.77 | 300 | 2.4581 | 0.6462 |
74
+ | No log | 18.41 | 350 | 2.6175 | 0.6354 |
75
+ | No log | 21.05 | 400 | 2.6697 | 0.6354 |
76
+ | No log | 23.67 | 450 | 2.7717 | 0.6354 |
77
+ | 0.0101 | 26.31 | 500 | 2.7975 | 0.6462 |
78
+ | 0.0101 | 28.92 | 550 | 2.8532 | 0.6390 |
79
+ | 0.0101 | 31.56 | 600 | 2.9054 | 0.6209 |
80
+ | 0.0101 | 34.21 | 650 | 2.8715 | 0.6318 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.21.2
86
+ - Pytorch 1.12.1+cu113
87
+ - Datasets 2.4.0
88
+ - Tokenizers 0.12.1