muhammadravi251001
commited on
Commit
•
115ba4e
1
Parent(s):
199d68d
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: xlm-roberta-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4428
|
22 |
+
- Accuracy: 0.8439
|
23 |
+
- F1: 0.8445
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 1e-05
|
43 |
+
- train_batch_size: 16
|
44 |
+
- eval_batch_size: 16
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 8
|
47 |
+
- total_train_batch_size: 128
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 10
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
|
56 |
+
| 0.4595 | 0.5 | 3654 | 0.4630 | 0.8064 | 0.8089 |
|
57 |
+
| 0.4138 | 1.0 | 7308 | 0.4497 | 0.8146 | 0.8165 |
|
58 |
+
| 0.3748 | 1.5 | 10962 | 0.4280 | 0.8420 | 0.8422 |
|
59 |
+
| 0.3687 | 2.0 | 14616 | 0.4161 | 0.8363 | 0.8376 |
|
60 |
+
| 0.3265 | 2.5 | 18270 | 0.4209 | 0.8459 | 0.8465 |
|
61 |
+
| 0.3392 | 3.0 | 21924 | 0.4107 | 0.8459 | 0.8453 |
|
62 |
+
| 0.2928 | 3.5 | 25578 | 0.4479 | 0.8395 | 0.8401 |
|
63 |
+
| 0.2975 | 4.0 | 29232 | 0.4428 | 0.8439 | 0.8445 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.31.0
|
69 |
+
- Pytorch 1.13.1
|
70 |
+
- Datasets 2.14.4
|
71 |
+
- Tokenizers 0.13.3
|