muhammadravi251001 commited on
Commit
115ba4e
1 Parent(s): 199d68d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: xlm-roberta-large
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ model-index:
10
+ - name: fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # fine-tuned-KoreanNLI-KorNLI-with-xlm-roberta-large
18
+
19
+ This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.4428
22
+ - Accuracy: 0.8439
23
+ - F1: 0.8445
24
+
25
+ ## Model description
26
+
27
+ More information needed
28
+
29
+ ## Intended uses & limitations
30
+
31
+ More information needed
32
+
33
+ ## Training and evaluation data
34
+
35
+ More information needed
36
+
37
+ ## Training procedure
38
+
39
+ ### Training hyperparameters
40
+
41
+ The following hyperparameters were used during training:
42
+ - learning_rate: 1e-05
43
+ - train_batch_size: 16
44
+ - eval_batch_size: 16
45
+ - seed: 42
46
+ - gradient_accumulation_steps: 8
47
+ - total_train_batch_size: 128
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 10
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
55
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
56
+ | 0.4595 | 0.5 | 3654 | 0.4630 | 0.8064 | 0.8089 |
57
+ | 0.4138 | 1.0 | 7308 | 0.4497 | 0.8146 | 0.8165 |
58
+ | 0.3748 | 1.5 | 10962 | 0.4280 | 0.8420 | 0.8422 |
59
+ | 0.3687 | 2.0 | 14616 | 0.4161 | 0.8363 | 0.8376 |
60
+ | 0.3265 | 2.5 | 18270 | 0.4209 | 0.8459 | 0.8465 |
61
+ | 0.3392 | 3.0 | 21924 | 0.4107 | 0.8459 | 0.8453 |
62
+ | 0.2928 | 3.5 | 25578 | 0.4479 | 0.8395 | 0.8401 |
63
+ | 0.2975 | 4.0 | 29232 | 0.4428 | 0.8439 | 0.8445 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.31.0
69
+ - Pytorch 1.13.1
70
+ - Datasets 2.14.4
71
+ - Tokenizers 0.13.3