Commit
路
93d9d54
1
Parent(s):
2c61c99
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-with-ITTL-with-freeze-LR-1e-05
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-base-uncased-with-ITTL-with-freeze-LR-1e-05
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.3132
|
20 |
+
- Exact Match: 53.2628
|
21 |
+
- F1: 68.3641
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-05
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 16
|
45 |
+
- total_train_batch_size: 128
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|
|
54 |
+
| 6.3129 | 0.5 | 19 | 3.9006 | 5.6437 | 16.4748 |
|
55 |
+
| 6.3129 | 1.0 | 38 | 2.8272 | 17.1076 | 30.0839 |
|
56 |
+
| 3.8917 | 1.5 | 57 | 2.4681 | 18.8713 | 32.8962 |
|
57 |
+
| 3.8917 | 2.0 | 76 | 2.2891 | 25.3968 | 38.0874 |
|
58 |
+
| 3.8917 | 2.5 | 95 | 2.1835 | 26.9841 | 39.5053 |
|
59 |
+
| 2.3963 | 3.0 | 114 | 2.0885 | 28.5714 | 42.0243 |
|
60 |
+
| 2.3963 | 3.5 | 133 | 1.9971 | 32.4515 | 45.4085 |
|
61 |
+
| 2.112 | 4.0 | 152 | 1.9124 | 34.3915 | 48.2893 |
|
62 |
+
| 2.112 | 4.5 | 171 | 1.8358 | 37.0370 | 50.6492 |
|
63 |
+
| 2.112 | 5.0 | 190 | 1.7545 | 40.7407 | 54.7031 |
|
64 |
+
| 1.8205 | 5.5 | 209 | 1.6432 | 44.4444 | 58.2669 |
|
65 |
+
| 1.8205 | 6.0 | 228 | 1.5589 | 46.9136 | 60.8052 |
|
66 |
+
| 1.8205 | 6.5 | 247 | 1.4861 | 48.1481 | 62.5185 |
|
67 |
+
| 1.573 | 7.0 | 266 | 1.4381 | 49.7354 | 64.1985 |
|
68 |
+
| 1.573 | 7.5 | 285 | 1.3944 | 51.6755 | 66.0223 |
|
69 |
+
| 1.387 | 8.0 | 304 | 1.3534 | 53.2628 | 67.6841 |
|
70 |
+
| 1.387 | 8.5 | 323 | 1.3384 | 53.0864 | 67.8619 |
|
71 |
+
| 1.387 | 9.0 | 342 | 1.3344 | 52.9101 | 68.0618 |
|
72 |
+
| 1.2998 | 9.5 | 361 | 1.3182 | 53.2628 | 68.4149 |
|
73 |
+
| 1.2998 | 10.0 | 380 | 1.3132 | 53.2628 | 68.3641 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.26.1
|
79 |
+
- Pytorch 1.13.1+cu117
|
80 |
+
- Datasets 2.2.0
|
81 |
+
- Tokenizers 0.13.2
|