muhammadbilal commited on
Commit
a1b13ae
1 Parent(s): eda8b82

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: xlm-roberta-base-finetuned-pos
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # xlm-roberta-base-finetuned-pos
19
+
20
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.0706
23
+ - Precision: 0.9800
24
+ - Recall: 0.9808
25
+ - F1: 0.9804
26
+ - Accuracy: 0.9821
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 5
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.1627 | 1.0 | 1583 | 0.1289 | 0.9599 | 0.9633 | 0.9616 | 0.9653 |
58
+ | 0.1009 | 2.0 | 3166 | 0.0931 | 0.9680 | 0.9716 | 0.9698 | 0.9730 |
59
+ | 0.0705 | 3.0 | 4749 | 0.0766 | 0.9758 | 0.9774 | 0.9766 | 0.9786 |
60
+ | 0.0536 | 4.0 | 6332 | 0.0697 | 0.9787 | 0.9795 | 0.9791 | 0.9812 |
61
+ | 0.0419 | 5.0 | 7915 | 0.0706 | 0.9800 | 0.9808 | 0.9804 | 0.9821 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.27.3
67
+ - Pytorch 1.13.1+cu116
68
+ - Datasets 2.10.1
69
+ - Tokenizers 0.13.2