Model save
Browse files- README.md +93 -0
- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: peiyi9979/math-shepherd-mistral-7b-prm
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: v3c_mistral_lora_lastn
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# v3c_mistral_lora_lastn
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [peiyi9979/math-shepherd-mistral-7b-prm](https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-prm) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3067
|
24 |
+
- Accuracy: 0.8592
|
25 |
+
- Precision: 0.8580
|
26 |
+
- Recall: 0.5968
|
27 |
+
- F1: 0.7040
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 765837
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- num_devices: 4
|
52 |
+
- gradient_accumulation_steps: 4
|
53 |
+
- total_train_batch_size: 128
|
54 |
+
- total_eval_batch_size: 32
|
55 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
56 |
+
- lr_scheduler_type: cosine
|
57 |
+
- lr_scheduler_warmup_ratio: 0.1
|
58 |
+
- num_epochs: 1
|
59 |
+
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
63 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
64 |
+
| No log | 0 | 0 | 0.6026 | 0.7339 | 0.6 | 0.1542 | 0.2453 |
|
65 |
+
| 0.5522 | 0.0495 | 20 | 0.5768 | 0.7395 | 0.5682 | 0.2964 | 0.3896 |
|
66 |
+
| 0.4818 | 0.0990 | 40 | 0.4859 | 0.7761 | 0.6835 | 0.3755 | 0.4847 |
|
67 |
+
| 0.3892 | 0.1485 | 60 | 0.4218 | 0.7982 | 0.6766 | 0.5375 | 0.5991 |
|
68 |
+
| 0.2916 | 0.1980 | 80 | 0.3747 | 0.8237 | 0.7701 | 0.5296 | 0.6276 |
|
69 |
+
| 0.2191 | 0.2475 | 100 | 0.3538 | 0.8304 | 0.7778 | 0.5534 | 0.6467 |
|
70 |
+
| 0.2189 | 0.2970 | 120 | 0.3754 | 0.8248 | 0.88 | 0.4348 | 0.5820 |
|
71 |
+
| 0.1841 | 0.3465 | 140 | 0.3427 | 0.8415 | 0.8438 | 0.5336 | 0.6538 |
|
72 |
+
| 0.2144 | 0.3960 | 160 | 0.3301 | 0.8404 | 0.8303 | 0.5415 | 0.6555 |
|
73 |
+
| 0.2638 | 0.4455 | 180 | 0.3202 | 0.8470 | 0.8485 | 0.5534 | 0.6699 |
|
74 |
+
| 0.2032 | 0.4950 | 200 | 0.3125 | 0.8570 | 0.8370 | 0.6087 | 0.7048 |
|
75 |
+
| 0.1703 | 0.5446 | 220 | 0.3295 | 0.8337 | 0.8552 | 0.4901 | 0.6231 |
|
76 |
+
| 0.175 | 0.5941 | 240 | 0.3116 | 0.8503 | 0.8471 | 0.5692 | 0.6809 |
|
77 |
+
| 0.1927 | 0.6436 | 260 | 0.3218 | 0.8459 | 0.8654 | 0.5336 | 0.6601 |
|
78 |
+
| 0.1848 | 0.6931 | 280 | 0.3069 | 0.8647 | 0.8659 | 0.6126 | 0.7176 |
|
79 |
+
| 0.222 | 0.7426 | 300 | 0.3036 | 0.8581 | 0.8613 | 0.5889 | 0.6995 |
|
80 |
+
| 0.1693 | 0.7921 | 320 | 0.3096 | 0.8525 | 0.8614 | 0.5652 | 0.6826 |
|
81 |
+
| 0.1752 | 0.8416 | 340 | 0.3108 | 0.8503 | 0.8554 | 0.5613 | 0.6778 |
|
82 |
+
| 0.2353 | 0.8911 | 360 | 0.3072 | 0.8592 | 0.8580 | 0.5968 | 0.7040 |
|
83 |
+
| 0.1984 | 0.9406 | 380 | 0.3078 | 0.8603 | 0.8629 | 0.5968 | 0.7056 |
|
84 |
+
| 0.2194 | 0.9901 | 400 | 0.3067 | 0.8592 | 0.8580 | 0.5968 | 0.7040 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- PEFT 0.13.2
|
90 |
+
- Transformers 4.46.0
|
91 |
+
- Pytorch 2.5.1+cu124
|
92 |
+
- Datasets 3.1.0
|
93 |
+
- Tokenizers 0.20.3
|
adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "peiyi9979/math-shepherd-mistral-7b-prm",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"q_proj",
|
24 |
+
"v_proj"
|
25 |
+
],
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f3440bf5c8a4e83f17c74cfd3652193c7a1486377c20db759d6e102d5a9d0cd
|
3 |
+
size 27280152
|