mtzig commited on
Commit
4977831
·
verified ·
1 Parent(s): 3ce0650

Model save

Browse files
Files changed (3) hide show
  1. README.md +81 -81
  2. model.safetensors +1 -1
  3. training_args.bin +1 -1
README.md CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.5579
20
- - Accuracy: 0.135
21
 
22
  ## Model description
23
 
@@ -49,85 +49,85 @@ The following hyperparameters were used during training:
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:------:|:----:|:---------------:|:--------:|
52
- | No log | 0 | 0 | 2.6523 | 0.0 |
53
- | 2.5669 | 0.0128 | 100 | 2.5637 | 0.0 |
54
- | 2.4943 | 0.0256 | 200 | 2.4864 | 0.0 |
55
- | 2.4021 | 0.0384 | 300 | 2.4031 | 0.0 |
56
- | 2.3401 | 0.0512 | 400 | 2.3406 | 0.0 |
57
- | 2.3156 | 0.0640 | 500 | 2.2938 | 0.0 |
58
- | 2.2569 | 0.0768 | 600 | 2.2496 | 0.0 |
59
- | 2.2248 | 0.0896 | 700 | 2.1901 | 0.0 |
60
- | 2.086 | 0.1024 | 800 | 2.0841 | 0.0 |
61
- | 1.972 | 0.1152 | 900 | 1.9745 | 0.0 |
62
- | 1.8129 | 0.1280 | 1000 | 1.8243 | 0.0 |
63
- | 1.7484 | 0.1408 | 1100 | 1.7172 | 0.005 |
64
- | 1.6341 | 0.1536 | 1200 | 1.6579 | 0.01 |
65
- | 1.5526 | 0.1665 | 1300 | 1.5674 | 0.005 |
66
- | 1.4884 | 0.1793 | 1400 | 1.4907 | 0.0 |
67
- | 1.4881 | 0.1921 | 1500 | 1.4831 | 0.005 |
68
- | 1.3971 | 0.2049 | 1600 | 1.3808 | 0.01 |
69
- | 1.4136 | 0.2177 | 1700 | 1.3420 | 0.015 |
70
- | 1.3024 | 0.2305 | 1800 | 1.2975 | 0.005 |
71
- | 1.2759 | 0.2433 | 1900 | 1.2343 | 0.03 |
72
- | 1.2258 | 0.2561 | 2000 | 1.2064 | 0.015 |
73
- | 1.1598 | 0.2689 | 2100 | 1.1575 | 0.045 |
74
- | 1.1416 | 0.2817 | 2200 | 1.1200 | 0.05 |
75
- | 1.1077 | 0.2945 | 2300 | 1.1366 | 0.055 |
76
- | 1.0426 | 0.3073 | 2400 | 1.0908 | 0.06 |
77
- | 1.0327 | 0.3201 | 2500 | 1.0422 | 0.065 |
78
- | 1.007 | 0.3329 | 2600 | 1.0304 | 0.06 |
79
- | 0.9646 | 0.3457 | 2700 | 0.9692 | 0.055 |
80
- | 0.9753 | 0.3585 | 2800 | 0.9414 | 0.025 |
81
- | 0.9347 | 0.3713 | 2900 | 0.9204 | 0.065 |
82
- | 0.9098 | 0.3841 | 3000 | 0.9292 | 0.04 |
83
- | 0.8989 | 0.3969 | 3100 | 0.8623 | 0.08 |
84
- | 0.9563 | 0.4097 | 3200 | 0.9201 | 0.06 |
85
- | 0.8445 | 0.4225 | 3300 | 0.8373 | 0.06 |
86
- | 0.8749 | 0.4353 | 3400 | 0.8468 | 0.09 |
87
- | 0.8352 | 0.4481 | 3500 | 0.8081 | 0.065 |
88
- | 0.8211 | 0.4609 | 3600 | 0.7949 | 0.09 |
89
- | 0.7724 | 0.4738 | 3700 | 0.7693 | 0.095 |
90
- | 0.7512 | 0.4866 | 3800 | 0.7588 | 0.09 |
91
- | 0.7176 | 0.4994 | 3900 | 0.7478 | 0.125 |
92
- | 0.7964 | 0.5122 | 4000 | 0.7499 | 0.03 |
93
- | 0.7561 | 0.5250 | 4100 | 0.7439 | 0.13 |
94
- | 0.7499 | 0.5378 | 4200 | 0.7456 | 0.105 |
95
- | 0.6744 | 0.5506 | 4300 | 0.6926 | 0.07 |
96
- | 0.6792 | 0.5634 | 4400 | 0.6805 | 0.125 |
97
- | 0.698 | 0.5762 | 4500 | 0.6753 | 0.125 |
98
- | 0.6829 | 0.5890 | 4600 | 0.6684 | 0.105 |
99
- | 0.6635 | 0.6018 | 4700 | 0.6620 | 0.105 |
100
- | 0.746 | 0.6146 | 4800 | 0.6894 | 0.065 |
101
- | 0.6637 | 0.6274 | 4900 | 0.6491 | 0.115 |
102
- | 0.6611 | 0.6402 | 5000 | 0.6797 | 0.135 |
103
- | 0.6658 | 0.6530 | 5100 | 0.6332 | 0.09 |
104
- | 0.6122 | 0.6658 | 5200 | 0.6320 | 0.135 |
105
- | 0.6293 | 0.6786 | 5300 | 0.6283 | 0.14 |
106
- | 0.6018 | 0.6914 | 5400 | 0.6220 | 0.095 |
107
- | 0.6105 | 0.7042 | 5500 | 0.6366 | 0.11 |
108
- | 0.6009 | 0.7170 | 5600 | 0.6011 | 0.12 |
109
- | 0.5913 | 0.7298 | 5700 | 0.5990 | 0.135 |
110
- | 0.6506 | 0.7426 | 5800 | 0.6214 | 0.16 |
111
- | 0.6126 | 0.7554 | 5900 | 0.5888 | 0.12 |
112
- | 0.6004 | 0.7682 | 6000 | 0.5905 | 0.12 |
113
- | 0.5713 | 0.7810 | 6100 | 0.5928 | 0.14 |
114
- | 0.5824 | 0.7939 | 6200 | 0.5954 | 0.17 |
115
- | 0.5874 | 0.8067 | 6300 | 0.5803 | 0.125 |
116
- | 0.5803 | 0.8195 | 6400 | 0.5785 | 0.115 |
117
- | 0.5691 | 0.8323 | 6500 | 0.5756 | 0.12 |
118
- | 0.5866 | 0.8451 | 6600 | 0.5700 | 0.135 |
119
- | 0.59 | 0.8579 | 6700 | 0.5692 | 0.11 |
120
- | 0.5511 | 0.8707 | 6800 | 0.5656 | 0.135 |
121
- | 0.5794 | 0.8835 | 6900 | 0.5621 | 0.13 |
122
- | 0.5575 | 0.8963 | 7000 | 0.5633 | 0.13 |
123
- | 0.5506 | 0.9091 | 7100 | 0.5658 | 0.115 |
124
- | 0.5605 | 0.9219 | 7200 | 0.5628 | 0.125 |
125
- | 0.5643 | 0.9347 | 7300 | 0.5607 | 0.115 |
126
- | 0.5675 | 0.9475 | 7400 | 0.5604 | 0.12 |
127
- | 0.576 | 0.9603 | 7500 | 0.5587 | 0.14 |
128
- | 0.5842 | 0.9731 | 7600 | 0.5582 | 0.135 |
129
- | 0.5791 | 0.9859 | 7700 | 0.5580 | 0.145 |
130
- | 0.5667 | 0.9987 | 7800 | 0.5579 | 0.135 |
131
 
132
 
133
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.5307
20
+ - Accuracy: 0.34
21
 
22
  ## Model description
23
 
 
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:------:|:----:|:---------------:|:--------:|
52
+ | No log | 0 | 0 | 2.6404 | 0.0 |
53
+ | 2.5674 | 0.0128 | 100 | 2.5647 | 0.0 |
54
+ | 2.5021 | 0.0256 | 200 | 2.4965 | 0.0 |
55
+ | 2.4106 | 0.0384 | 300 | 2.4111 | 0.0 |
56
+ | 2.3432 | 0.0512 | 400 | 2.3422 | 0.0 |
57
+ | 2.32 | 0.0640 | 500 | 2.3004 | 0.0 |
58
+ | 2.2412 | 0.0768 | 600 | 2.2452 | 0.0 |
59
+ | 2.1721 | 0.0896 | 700 | 2.1679 | 0.0 |
60
+ | 1.9939 | 0.1024 | 800 | 1.9887 | 0.0 |
61
+ | 1.9089 | 0.1152 | 900 | 1.9041 | 0.0 |
62
+ | 2.0517 | 0.1280 | 1000 | 1.8690 | 0.0 |
63
+ | 1.854 | 0.1408 | 1100 | 1.7567 | 0.0 |
64
+ | 1.7972 | 0.1536 | 1200 | 1.7314 | 0.0 |
65
+ | 1.6798 | 0.1665 | 1300 | 1.7170 | 0.0 |
66
+ | 1.6579 | 0.1793 | 1400 | 1.6576 | 0.0 |
67
+ | 1.6968 | 0.1921 | 1500 | 1.6208 | 0.005 |
68
+ | 1.5677 | 0.2049 | 1600 | 1.6667 | 0.0 |
69
+ | 1.5288 | 0.2177 | 1700 | 1.5156 | 0.005 |
70
+ | 1.5954 | 0.2305 | 1800 | 1.5904 | 0.0 |
71
+ | 1.473 | 0.2433 | 1900 | 1.5063 | 0.01 |
72
+ | 1.4783 | 0.2561 | 2000 | 1.4800 | 0.01 |
73
+ | 1.5276 | 0.2689 | 2100 | 1.4590 | 0.01 |
74
+ | 1.3354 | 0.2817 | 2200 | 1.4401 | 0.02 |
75
+ | 1.4443 | 0.2945 | 2300 | 1.3868 | 0.0 |
76
+ | 1.3269 | 0.3073 | 2400 | 1.3720 | 0.025 |
77
+ | 1.3306 | 0.3201 | 2500 | 1.3052 | 0.015 |
78
+ | 1.274 | 0.3329 | 2600 | 1.3153 | 0.015 |
79
+ | 1.2331 | 0.3457 | 2700 | 1.2486 | 0.02 |
80
+ | 1.2947 | 0.3585 | 2800 | 1.2650 | 0.01 |
81
+ | 1.1635 | 0.3713 | 2900 | 1.1717 | 0.03 |
82
+ | 1.112 | 0.3841 | 3000 | 1.1700 | 0.045 |
83
+ | 1.1343 | 0.3969 | 3100 | 1.1362 | 0.04 |
84
+ | 1.072 | 0.4097 | 3200 | 1.1037 | 0.055 |
85
+ | 1.0831 | 0.4225 | 3300 | 1.0751 | 0.02 |
86
+ | 1.0762 | 0.4353 | 3400 | 1.0773 | 0.035 |
87
+ | 0.9965 | 0.4481 | 3500 | 1.0021 | 0.015 |
88
+ | 0.9867 | 0.4609 | 3600 | 0.9721 | 0.065 |
89
+ | 0.9194 | 0.4738 | 3700 | 0.9881 | 0.08 |
90
+ | 1.1577 | 0.4866 | 3800 | 1.1223 | 0.05 |
91
+ | 0.9286 | 0.4994 | 3900 | 0.9181 | 0.065 |
92
+ | 0.932 | 0.5122 | 4000 | 0.9695 | 0.035 |
93
+ | 0.907 | 0.5250 | 4100 | 0.9809 | 0.085 |
94
+ | 0.8528 | 0.5378 | 4200 | 0.8546 | 0.07 |
95
+ | 0.8456 | 0.5506 | 4300 | 0.8779 | 0.095 |
96
+ | 0.7858 | 0.5634 | 4400 | 0.8470 | 0.08 |
97
+ | 0.8417 | 0.5762 | 4500 | 0.8280 | 0.09 |
98
+ | 0.8261 | 0.5890 | 4600 | 0.8270 | 0.11 |
99
+ | 0.8291 | 0.6018 | 4700 | 0.8272 | 0.07 |
100
+ | 0.782 | 0.6146 | 4800 | 0.7997 | 0.07 |
101
+ | 0.7449 | 0.6274 | 4900 | 0.7533 | 0.06 |
102
+ | 0.7362 | 0.6402 | 5000 | 0.7722 | 0.1 |
103
+ | 0.7751 | 0.6530 | 5100 | 0.7441 | 0.11 |
104
+ | 0.7249 | 0.6658 | 5200 | 0.7591 | 0.08 |
105
+ | 0.7121 | 0.6786 | 5300 | 0.7160 | 0.17 |
106
+ | 0.704 | 0.6914 | 5400 | 0.7142 | 0.1 |
107
+ | 0.6699 | 0.7042 | 5500 | 0.6914 | 0.09 |
108
+ | 0.6853 | 0.7170 | 5600 | 0.6954 | 0.105 |
109
+ | 0.6638 | 0.7298 | 5700 | 0.6716 | 0.165 |
110
+ | 0.6862 | 0.7426 | 5800 | 0.6623 | 0.12 |
111
+ | 0.655 | 0.7554 | 5900 | 0.6549 | 0.145 |
112
+ | 0.6251 | 0.7682 | 6000 | 0.6537 | 0.125 |
113
+ | 0.637 | 0.7810 | 6100 | 0.6379 | 0.155 |
114
+ | 0.625 | 0.7939 | 6200 | 0.6188 | 0.17 |
115
+ | 0.6114 | 0.8067 | 6300 | 0.6036 | 0.205 |
116
+ | 0.6303 | 0.8195 | 6400 | 0.6004 | 0.19 |
117
+ | 0.5983 | 0.8323 | 6500 | 0.5845 | 0.225 |
118
+ | 0.6014 | 0.8451 | 6600 | 0.5766 | 0.245 |
119
+ | 0.5785 | 0.8579 | 6700 | 0.5765 | 0.24 |
120
+ | 0.5804 | 0.8707 | 6800 | 0.5620 | 0.28 |
121
+ | 0.5633 | 0.8835 | 6900 | 0.5518 | 0.3 |
122
+ | 0.5533 | 0.8963 | 7000 | 0.5489 | 0.305 |
123
+ | 0.5551 | 0.9091 | 7100 | 0.5481 | 0.305 |
124
+ | 0.569 | 0.9219 | 7200 | 0.5398 | 0.3 |
125
+ | 0.5583 | 0.9347 | 7300 | 0.5389 | 0.31 |
126
+ | 0.5357 | 0.9475 | 7400 | 0.5369 | 0.325 |
127
+ | 0.5453 | 0.9603 | 7500 | 0.5328 | 0.34 |
128
+ | 0.5472 | 0.9731 | 7600 | 0.5309 | 0.345 |
129
+ | 0.5349 | 0.9859 | 7700 | 0.5307 | 0.345 |
130
+ | 0.5309 | 0.9987 | 7800 | 0.5307 | 0.34 |
131
 
132
 
133
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:69b840e30083a6f429f2e2d3a95164ff20680718799e2a57760a84bde9cb8d59
3
  size 30712
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5904d206ab9be6a335d2117c5d752cd41674b6a164df884cc8532aae466da9c0
3
  size 30712
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:467a8e5203862f74d85306d6a91833756a707f22ffc94a63d6d6e057d5ba7cba
3
  size 5240
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a0ccc052bfa9cb6c090b4b988a19472dd352c0a9c3e0fd028f78b6c2d98c4735
3
  size 5240