mtyrrell commited on
Commit
07f4e32
1 Parent(s): 8454a6a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -39
README.md CHANGED
@@ -1,5 +1,6 @@
1
  ---
2
  license: apache-2.0
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
@@ -7,12 +8,6 @@ metrics:
7
  model-index:
8
  - name: IKT_classifier_economywide_best
9
  results: []
10
-
11
- widget:
12
- - text: "One million trees have been planted in the embankments, river/ canal banks to mitigate carbon emission and 2725.1 ha marsh lands were rehabilitated and included in fisheries culture to enhance livelihood activities by the Ministry of Livestock and fisheries. Surface Water Use and Rainwater Harvesting Several city water supply authorities are implementing projects to increase surface water use and reducing ground water use. These projects will reduce energy consumption for pumping groundwater and contribute to GHG emission reduction."
13
- example_title: NEGATIVE
14
- - text: "CA global solution is needed to address a global problem. Along with the rest of the global community, Singapore will play our part to reduce emissions in support of the long-term temperature goal of the Paris Agreement. We have put forth a long-term low- emissions development strategy (LEDS) that aspires to halve emissions from its peak to 33 MtCO2e by 2050, with a view to achieving net-zero emissions as soon as viable in the second half of the century."
15
- example_title: ECONOMY-WIDE
16
  ---
17
 
18
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -20,15 +15,15 @@ should probably proofread and complete it, then remove this comment. -->
20
 
21
  # IKT_classifier_economywide_best
22
 
23
- This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the [GIZ/policy_qa_v0_1](https://huggingface.co/datasets/GIZ/policy_qa_v0_1) dataset.
24
  It achieves the following results on the evaluation set:
25
- - Loss: 0.1642
26
- - Precision Weighted: 0.9530
27
- - Precision Macro: 0.9524
28
- - Recall Weighted: 0.9528
29
- - Recall Samples: 0.9532
30
- - F1-score: 0.9527
31
- - Accuracy: 0.9528
32
 
33
  ## Model description
34
 
@@ -47,44 +42,29 @@ More information needed
47
  ### Training hyperparameters
48
 
49
  The following hyperparameters were used during training:
50
- - learning_rate: 9.375102561418467e-05
51
  - train_batch_size: 16
52
  - eval_batch_size: 16
53
  - seed: 42
54
- - gradient_accumulation_steps: 2
55
- - total_train_batch_size: 32
56
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
  - lr_scheduler_type: linear
58
- - lr_scheduler_warmup_steps: 100.0
59
  - num_epochs: 5
60
 
61
  ### Training results
62
 
63
- | Training Loss | Epoch | Step | Validation Loss | Precision Weighted | Precision Macro | Recall Weighted | Recall Samples | F1-score | Accuracy |
64
- |:-------------:|:-----:|:----:|:---------------:|:------------------:|:---------------:|:---------------:|:--------------:|:--------:|:--------:|
65
- | No log | 1.0 | 30 | 0.3847 | 0.9356 | 0.9340 | 0.9340 | 0.9354 | 0.9339 | 0.9340 |
66
- | No log | 2.0 | 60 | 0.3545 | 0.8911 | 0.8933 | 0.8868 | 0.8832 | 0.8853 | 0.8868 |
67
- | No log | 3.0 | 90 | 0.1387 | 0.9623 | 0.9621 | 0.9623 | 0.9621 | 0.9621 | 0.9623 |
68
- | No log | 4.0 | 120 | 0.1840 | 0.9541 | 0.9555 | 0.9528 | 0.9511 | 0.9525 | 0.9528 |
69
- | No log | 5.0 | 150 | 0.1642 | 0.9530 | 0.9524 | 0.9528 | 0.9532 | 0.9527 | 0.9528 |
70
-
71
- ## Environmental Impact
72
-
73
- *Carbon emissions were estimated using the [codecarbon](https://github.com/mlco2/codecarbon). The carbon emission reported are incluidng the hyperparamter search performed on subset of training data*.
74
-
75
- - **Hardware Type:** 16GB T4
76
- - **Hours used:** 1
77
- - **Cloud Provider:** Google Colab
78
- - **Carbon Emitted** : 0.03666153971974974
79
 
80
- [codecarbon INFO @ 20:45:15] Energy consumed for RAM : 0.005929 kWh. RAM Power : 9.54426097869873 W
81
- [codecarbon INFO @ 20:45:15] Energy consumed for all GPUs : 0.042682 kWh. Total GPU Power : 36.884 W
82
- [codecarbon INFO @ 20:45:15] Energy consumed for all CPUs : 0.026424 kWh. Total CPU Power : 42.5 W
83
- [codecarbon INFO @ 20:45:15] 0.075035 kWh of electricity used since the beginning.
84
 
85
  ### Framework versions
86
 
87
- - Transformers 4.30.2
88
  - Pytorch 2.0.1+cu118
89
  - Datasets 2.13.1
90
  - Tokenizers 0.13.3
 
1
  ---
2
  license: apache-2.0
3
+ base_model: sentence-transformers/all-mpnet-base-v2
4
  tags:
5
  - generated_from_trainer
6
  metrics:
 
8
  model-index:
9
  - name: IKT_classifier_economywide_best
10
  results: []
 
 
 
 
 
 
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
15
 
16
  # IKT_classifier_economywide_best
17
 
18
+ This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.1184
21
+ - Precision Macro: 0.9615
22
+ - Precision Weighted: 0.9630
23
+ - Recall Macro: 0.9635
24
+ - Recall Weighted: 0.9623
25
+ - F1-score: 0.9621
26
+ - Accuracy: 0.9623
27
 
28
  ## Model description
29
 
 
42
  ### Training hyperparameters
43
 
44
  The following hyperparameters were used during training:
45
+ - learning_rate: 7.132195091261459e-05
46
  - train_batch_size: 16
47
  - eval_batch_size: 16
48
  - seed: 42
 
 
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: linear
51
+ - lr_scheduler_warmup_steps: 300.0
52
  - num_epochs: 5
53
 
54
  ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
57
+ |:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
58
+ | No log | 1.0 | 60 | 0.4189 | 0.9426 | 0.9442 | 0.9445 | 0.9434 | 0.9432 | 0.9434 |
59
+ | No log | 2.0 | 120 | 0.1438 | 0.9521 | 0.9531 | 0.9533 | 0.9528 | 0.9526 | 0.9528 |
60
+ | No log | 3.0 | 180 | 0.1119 | 0.9615 | 0.9630 | 0.9635 | 0.9623 | 0.9621 | 0.9623 |
61
+ | No log | 4.0 | 240 | 0.1477 | 0.9521 | 0.9531 | 0.9533 | 0.9528 | 0.9526 | 0.9528 |
62
+ | No log | 5.0 | 300 | 0.1184 | 0.9615 | 0.9630 | 0.9635 | 0.9623 | 0.9621 | 0.9623 |
 
 
 
 
 
 
 
 
 
63
 
 
 
 
 
64
 
65
  ### Framework versions
66
 
67
+ - Transformers 4.31.0
68
  - Pytorch 2.0.1+cu118
69
  - Datasets 2.13.1
70
  - Tokenizers 0.13.3