update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: sentence-transformers/all-mpnet-base-v2
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: IKT_classifier_conditional_best
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# IKT_classifier_conditional_best
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.9766
|
21 |
+
- Precision Macro: 0.8010
|
22 |
+
- Precision Weighted: 0.8078
|
23 |
+
- Recall Macro: 0.7928
|
24 |
+
- Recall Weighted: 0.8093
|
25 |
+
- F1-score: 0.7963
|
26 |
+
- Accuracy: 0.8093
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 4.112924307850544e-05
|
46 |
+
- train_batch_size: 3
|
47 |
+
- eval_batch_size: 3
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 400.0
|
52 |
+
- num_epochs: 5
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted | F1-score | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:------------------:|:------------:|:---------------:|:--------:|:--------:|
|
58 |
+
| 0.6562 | 1.0 | 696 | 0.5617 | 0.7283 | 0.7423 | 0.7283 | 0.7423 | 0.7283 | 0.7423 |
|
59 |
+
| 0.6091 | 2.0 | 1392 | 0.6492 | 0.7345 | 0.7443 | 0.7251 | 0.7474 | 0.7287 | 0.7474 |
|
60 |
+
| 0.3892 | 3.0 | 2088 | 0.7730 | 0.7848 | 0.7872 | 0.7612 | 0.7887 | 0.7687 | 0.7887 |
|
61 |
+
| 0.2509 | 4.0 | 2784 | 0.9735 | 0.7778 | 0.7937 | 0.7858 | 0.7887 | 0.7807 | 0.7887 |
|
62 |
+
| 0.1648 | 5.0 | 3480 | 0.9766 | 0.8010 | 0.8078 | 0.7928 | 0.8093 | 0.7963 | 0.8093 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.31.0
|
68 |
+
- Pytorch 2.0.1+cu118
|
69 |
+
- Datasets 2.13.1
|
70 |
+
- Tokenizers 0.13.3
|