Maciej Lulka
commited on
Commit
•
c6ac363
1
Parent(s):
6c50f5d
Vanilla unit1 PPO LunarLander
Browse files- README.md +37 -0
- base_HF_RL_unit1_PPO_model.zip +3 -0
- base_HF_RL_unit1_PPO_model/_stable_baselines3_version +1 -0
- base_HF_RL_unit1_PPO_model/data +94 -0
- base_HF_RL_unit1_PPO_model/policy.optimizer.pth +3 -0
- base_HF_RL_unit1_PPO_model/policy.pth +3 -0
- base_HF_RL_unit1_PPO_model/pytorch_variables.pth +3 -0
- base_HF_RL_unit1_PPO_model/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO_MlpPolicy
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 249.01 +/- 13.07
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO_MlpPolicy** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO_MlpPolicy** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
base_HF_RL_unit1_PPO_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b292756348ec75b8b655a94ba1cf998ec089f6c44633b52e51ee0495f968d18
|
3 |
+
size 147218
|
base_HF_RL_unit1_PPO_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
base_HF_RL_unit1_PPO_model/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f36830a55e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36830a5670>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36830a5700>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36830a5790>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f36830a5820>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f36830a58b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36830a5940>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f36830a59d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36830a5a60>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36830a5af0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36830a5b80>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f368309de70>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670536607493209103,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOILL3yT8o+9k1RPdeeXb7A2XE7MBmTPAAAAAAAAAAAzVzEvVKYz7ktSKi7XlQotqdRnbtMgso6AACAPwAAgD+aWhw+LwVhP+qogz3eT16+C0nxPUWdmLwAAAAAAAAAADOgYr0pRGC6AqY3POF1IDZ2ISa7OVcWNQAAgD8AAIA/Zp6hu/YMeLoqFc65x8IutuZQ3rrNn/E4AACAPwAAgD/NuuY8SA2Guju/ors9DyY4+Uv8Otuxm7YAAIA/AACAPwD2cL17/oC6G7FqO3FF/zZxsSu59aqHugAAgD8AAIA/TagLvRQIgbqB7sO7T274N5smiLd60Dm3AACAPwAAgD+z4hU9FIiOuius2DoTAos1p2YtuV37+rkAAIA/AACAPxpYHj0UNI66NVlau/bIQjhm01k5A/35OQAAgD8AAIA/AMDwOa6ljLrr5Ei7rmq5NgyNx7peDCa2AACAPwAAgD8mghK+ZHitPhb3GD2HqUW+bIejPHIqQL0AAAAAAAAAALPgJr0p7D+6a6tcOXNuRDQ7m527PqmCuAAAgD8AAIA/ZjtmvR/l27lE7YI6QseTtvnRc7sdPZq5AACAPwAAgD+z97O9KTxoulGtKrrjmZM11l34OtohQTkAAIA/AACAP81YbDz9XrM/AS05P0o8Z75sHW68gkn7vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIya1JtyWdZUCUhpRSlIwBbJRN6AOMAXSUR0CYAIB2OhkBdX2UKGgGaAloD0MIwytJnmvwYkCUhpRSlGgVTegDaBZHQJgatkf9xZN1fZQoaAZoCWgPQwhdp5GWyo1IQJSGlFKUaBVNHAFoFkdAmCAzH4oJA3V9lChoBmgJaA9DCAzO4O8XM2FAlIaUUpRoFU3oA2gWR0CYIImYBvJjdX2UKGgGaAloD0MIr3rAPGSuWECUhpRSlGgVTegDaBZHQJgiV5kbxVh1fZQoaAZoCWgPQwj6mA8I9F5jQJSGlFKUaBVN6ANoFkdAmCLZ7w8W9HV9lChoBmgJaA9DCNOiPsmdVmxAlIaUUpRoFU3bA2gWR0CYJFHq/ub7dX2UKGgGaAloD0MIx/Xv+syZY0CUhpRSlGgVTegDaBZHQJgul+9alk91fZQoaAZoCWgPQwhgBmNEomRiQJSGlFKUaBVN6ANoFkdAmC7L9Q40dnV9lChoBmgJaA9DCAYQPpToRWFAlIaUUpRoFU3oA2gWR0CYL+VtXPqtdX2UKGgGaAloD0MIKzOl9bcEYkCUhpRSlGgVTegDaBZHQJg0D4M4LkV1fZQoaAZoCWgPQwi9jjhkAw9hQJSGlFKUaBVN6ANoFkdAmENbDVH4GnV9lChoBmgJaA9DCPkwe9n2y2JAlIaUUpRoFU3oA2gWR0CYSTZk078vdX2UKGgGaAloD0MIVyO70rIKZ0CUhpRSlGgVTegDaBZHQJhRjAzpHI91fZQoaAZoCWgPQwjlmZfDbmdhQJSGlFKUaBVN6ANoFkdAmFGgA6uGK3V9lChoBmgJaA9DCFUzaymgXmFAlIaUUpRoFU3oA2gWR0CYWpbnX/YKdX2UKGgGaAloD0MIyOvBpHieZUCUhpRSlGgVTegDaBZHQJhbuHYYixF1fZQoaAZoCWgPQwgPt0PD4lNkQJSGlFKUaBVN6ANoFkdAmHTi5I6KcnV9lChoBmgJaA9DCA4TDVLwb1xAlIaUUpRoFU3oA2gWR0CYeyqIacZtdX2UKGgGaAloD0MI06V/SSqhX0CUhpRSlGgVTegDaBZHQJh7kDp1RtR1fZQoaAZoCWgPQwipFDsah5lgQJSGlFKUaBVN6ANoFkdAmH1v0qYqonV9lChoBmgJaA9DCG5OJQPAcGBAlIaUUpRoFU3oA2gWR0CYffpAD7qIdX2UKGgGaAloD0MIELIsmHggZUCUhpRSlGgVTegDaBZHQJh/UfnwG4Z1fZQoaAZoCWgPQwgI5BJHHpRdQJSGlFKUaBVN6ANoFkdAmIldjPOY6XV9lChoBmgJaA9DCF/waU5e/mRAlIaUUpRoFU3oA2gWR0CYiZIjW07bdX2UKGgGaAloD0MIGRwlr84vXECUhpRSlGgVTegDaBZHQJiKnaZhKDl1fZQoaAZoCWgPQwgwoYLDC0FjQJSGlFKUaBVN6ANoFkdAmI6pLIxQBXV9lChoBmgJaA9DCDTZP08D8F9AlIaUUpRoFU3oA2gWR0CYnfgSvkimdX2UKGgGaAloD0MIup7ouvCAY0CUhpRSlGgVTegDaBZHQJilBh1DBuZ1fZQoaAZoCWgPQwir6uV3mlFlQJSGlFKUaBVN6ANoFkdAmK1ffKp1inV9lChoBmgJaA9DCG3H1F1ZGmFAlIaUUpRoFU3oA2gWR0CYrXHAymALdX2UKGgGaAloD0MI12fO+pRGXkCUhpRSlGgVTegDaBZHQJi0dUipvP11fZQoaAZoCWgPQwi4dMx5xmZeQJSGlFKUaBVN6ANoFkdAmLVT81n/UHV9lChoBmgJaA9DCCv7rgh+BmVAlIaUUpRoFU3oA2gWR0CYzN/ViF0xdX2UKGgGaAloD0MINbdCWI3JY0CUhpRSlGgVTegDaBZHQJjRz50r9VF1fZQoaAZoCWgPQwjwGB772QdmQJSGlFKUaBVN6ANoFkdAmNIeOjqOcXV9lChoBmgJaA9DCNTS3AphWWhAlIaUUpRoFU3oA2gWR0CY07rfcer/dX2UKGgGaAloD0MIKsk6HN0gY0CUhpRSlGgVTegDaBZHQJjUOAoXsPd1fZQoaAZoCWgPQwjIYTB/hWxfQJSGlFKUaBVN6ANoFkdAmNWUMoc7yXV9lChoBmgJaA9DCJxQiIDDWGRAlIaUUpRoFU3oA2gWR0CY30dgv115dX2UKGgGaAloD0MIlWOyuH9RYkCUhpRSlGgVTegDaBZHQJjfgxM36yl1fZQoaAZoCWgPQwjpmzQNCl1gQJSGlFKUaBVN6ANoFkdAmOC9Gqgh83V9lChoBmgJaA9DCJ1Jm6p79WJAlIaUUpRoFU3oA2gWR0CY5JoH9m6HdX2UKGgGaAloD0MI/gsEATJeYECUhpRSlGgVTegDaBZHQJjyCf7Jnxt1fZQoaAZoCWgPQwhT6Sec3exiQJSGlFKUaBVN6ANoFkdAmPboKlYU4HV9lChoBmgJaA9DCNqu0AfLSGRAlIaUUpRoFU3oA2gWR0CY/apZwGW2dX2UKGgGaAloD0MIOjyE8dMAXkCUhpRSlGgVTegDaBZHQJj9uuHN5dJ1fZQoaAZoCWgPQwg3+pgPCBxkQJSGlFKUaBVN6ANoFkdAmQTYUBXCCXV9lChoBmgJaA9DCMzvNJnx2mRAlIaUUpRoFU3oA2gWR0CZBbZcs189dX2UKGgGaAloD0MID+85sByRXUCUhpRSlGgVTegDaBZHQJkKPa11GLF1fZQoaAZoCWgPQwh4X5ULFY1iQJSGlFKUaBVN6ANoFkdAmSHX6l+Ey3V9lChoBmgJaA9DCHCUvDrHu2FAlIaUUpRoFU3oA2gWR0CZIiRBNVR2dX2UKGgGaAloD0MIPN7kt+igY0CUhpRSlGgVTegDaBZHQJkjsCEHt4R1fZQoaAZoCWgPQwjmPjkKkJViQJSGlFKUaBVN6ANoFkdAmSQag7HQyHV9lChoBmgJaA9DCNrFNNM9lGNAlIaUUpRoFU3oA2gWR0CZJVAG0NSZdX2UKGgGaAloD0MIKETAIdSlYECUhpRSlGgVTegDaBZHQJkuI6XBxgl1fZQoaAZoCWgPQwgjvD0IgU5nQJSGlFKUaBVN6ANoFkdAmS5SobXHznV9lChoBmgJaA9DCCGvB5Ni92FAlIaUUpRoFU3oA2gWR0CZL1dOqNp/dX2UKGgGaAloD0MISpaTUHrNZ0CUhpRSlGgVTegDaBZHQJkzPBXS0Bx1fZQoaAZoCWgPQwjs+ZrlskFhQJSGlFKUaBVN6ANoFkdAmUNKAe7tiXV9lChoBmgJaA9DCCNnYU87Z2ZAlIaUUpRoFU3oA2gWR0CZS1wcHWz4dX2UKGgGaAloD0MI8E+pEmVuXECUhpRSlGgVTegDaBZHQJlYWHrQgLZ1fZQoaAZoCWgPQwgv3SQGgUtfQJSGlFKUaBVN6ANoFkdAmVh9ozvZy3V9lChoBmgJaA9DCFCnPLqRKWFAlIaUUpRoFU3oA2gWR0CZZabGFSKndX2UKGgGaAloD0MIrRVtjnMnZ0CUhpRSlGgVTegDaBZHQJlm7MfRu0l1fZQoaAZoCWgPQwhMqODwgiNiQJSGlFKUaBVN6ANoFkdAmW29ZFG5MHV9lChoBmgJaA9DCLn8h/RbwWVAlIaUUpRoFU3oA2gWR0CZhP9CeEqUdX2UKGgGaAloD0MI1gJ7TCTvYUCUhpRSlGgVTegDaBZHQJmFTNUwSJ11fZQoaAZoCWgPQwjYuP5dn5JiQJSGlFKUaBVN6ANoFkdAmYbcvduYQnV9lChoBmgJaA9DCBxfe2bJ/mBAlIaUUpRoFU3oA2gWR0CZh03NcGC7dX2UKGgGaAloD0MIU7DG2fSgYECUhpRSlGgVTegDaBZHQJmIkKfFrEd1fZQoaAZoCWgPQwjH8UOlEXZhQJSGlFKUaBVN6ANoFkdAmZE3RCx/u3V9lChoBmgJaA9DCP+Xa9ECbmFAlIaUUpRoFU3oA2gWR0CZkWVjZteldX2UKGgGaAloD0MI/isrTcreZkCUhpRSlGgVTegDaBZHQJmSa0Y0l7d1fZQoaAZoCWgPQwj8witJnltmQJSGlFKUaBVN6ANoFkdAmZbVpXZGrnV9lChoBmgJaA9DCN+LL9pjBGVAlIaUUpRoFU3oA2gWR0CZpf5+pfhNdX2UKGgGaAloD0MIIc1YNB0BYkCUhpRSlGgVTegDaBZHQJmrTQC0WuZ1fZQoaAZoCWgPQwhha7bykvNkQJSGlFKUaBVN6ANoFkdAmbMbojfNzXV9lChoBmgJaA9DCInuWddoBV1AlIaUUpRoFU3oA2gWR0CZsyzmwJPZdX2UKGgGaAloD0MImUnUC757YkCUhpRSlGgVTegDaBZHQJm6PDXOGCZ1fZQoaAZoCWgPQwimCkYldchlQJSGlFKUaBVN6ANoFkdAmbscsYl6aHV9lChoBmgJaA9DCA0zNJ6IhGVAlIaUUpRoFU3oA2gWR0CZv7cVgx8EdX2UKGgGaAloD0MIMzSeCGKiZ0CUhpRSlGgVTegDaBZHQJnX1jwx33Z1fZQoaAZoCWgPQwgqOLwgIiJkQJSGlFKUaBVN6ANoFkdAmdgn4fwI+nV9lChoBmgJaA9DCFlS7j7HaGNAlIaUUpRoFU3oA2gWR0CZ2dNVR1oydX2UKGgGaAloD0MIYRvxZDfHZECUhpRSlGgVTegDaBZHQJnaTZzxPO91fZQoaAZoCWgPQwifc7frJQtkQJSGlFKUaBVN6ANoFkdAmduiV0Lc9HV9lChoBmgJaA9DCKOP+YBApGJAlIaUUpRoFU3oA2gWR0CZ5Smmce8xdX2UKGgGaAloD0MId/NUh1yRYkCUhpRSlGgVTegDaBZHQJnlWxJNCZ51fZQoaAZoCWgPQwj+8PPfg9RkQJSGlFKUaBVN6ANoFkdAmeZm9L6DXnV9lChoBmgJaA9DCCu9NhsrEUZAlIaUUpRoFU0MAWgWR0CZ6eb961LKdX2UKGgGaAloD0MIOsssQjHcY0CUhpRSlGgVTegDaBZHQJnqXJOnEVF1fZQoaAZoCWgPQwgF+kSeJGpkQJSGlFKUaBVN6ANoFkdAmffZ6IFeOXV9lChoBmgJaA9DCO0pOSd2FGNAlIaUUpRoFU3oA2gWR0CZ/MLHdXT3dX2UKGgGaAloD0MIVFT9SuffX0CUhpRSlGgVTegDaBZHQJoFtyGSIP91fZQoaAZoCWgPQwiUTE7tjPNhQJSGlFKUaBVN6ANoFkdAmgXOoxYaHnV9lChoBmgJaA9DCO+s3XahbGZAlIaUUpRoFU3oA2gWR0CaEAb0voNedX2UKGgGaAloD0MIeO49XHK+XkCUhpRSlGgVTegDaBZHQJoQ490Rvm51fZQoaAZoCWgPQwgiVKnZg+RjQJSGlFKUaBVN6ANoFkdAmhWRl18stnV9lChoBmgJaA9DCDM0ngjiXGZAlIaUUpRoFU3oA2gWR0CaGmI4EOiGdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
base_HF_RL_unit1_PPO_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ea032ee0ba9b7c3ce3cb9ec736fa24a11d6569cb694c457beb5e4aad6d9c224
|
3 |
+
size 87929
|
base_HF_RL_unit1_PPO_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:629b6e331edaacbc7a011d79b60f9dfa1d9832630591ecec7ec1a207696fb22d
|
3 |
+
size 43201
|
base_HF_RL_unit1_PPO_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
base_HF_RL_unit1_PPO_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f36830a55e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36830a5670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36830a5700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36830a5790>", "_build": "<function ActorCriticPolicy._build at 0x7f36830a5820>", "forward": "<function ActorCriticPolicy.forward at 0x7f36830a58b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36830a5940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f36830a59d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36830a5a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36830a5af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36830a5b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f368309de70>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670536607493209103, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOILL3yT8o+9k1RPdeeXb7A2XE7MBmTPAAAAAAAAAAAzVzEvVKYz7ktSKi7XlQotqdRnbtMgso6AACAPwAAgD+aWhw+LwVhP+qogz3eT16+C0nxPUWdmLwAAAAAAAAAADOgYr0pRGC6AqY3POF1IDZ2ISa7OVcWNQAAgD8AAIA/Zp6hu/YMeLoqFc65x8IutuZQ3rrNn/E4AACAPwAAgD/NuuY8SA2Guju/ors9DyY4+Uv8Otuxm7YAAIA/AACAPwD2cL17/oC6G7FqO3FF/zZxsSu59aqHugAAgD8AAIA/TagLvRQIgbqB7sO7T274N5smiLd60Dm3AACAPwAAgD+z4hU9FIiOuius2DoTAos1p2YtuV37+rkAAIA/AACAPxpYHj0UNI66NVlau/bIQjhm01k5A/35OQAAgD8AAIA/AMDwOa6ljLrr5Ei7rmq5NgyNx7peDCa2AACAPwAAgD8mghK+ZHitPhb3GD2HqUW+bIejPHIqQL0AAAAAAAAAALPgJr0p7D+6a6tcOXNuRDQ7m527PqmCuAAAgD8AAIA/ZjtmvR/l27lE7YI6QseTtvnRc7sdPZq5AACAPwAAgD+z97O9KTxoulGtKrrjmZM11l34OtohQTkAAIA/AACAP81YbDz9XrM/AS05P0o8Z75sHW68gkn7vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIya1JtyWdZUCUhpRSlIwBbJRN6AOMAXSUR0CYAIB2OhkBdX2UKGgGaAloD0MIwytJnmvwYkCUhpRSlGgVTegDaBZHQJgatkf9xZN1fZQoaAZoCWgPQwhdp5GWyo1IQJSGlFKUaBVNHAFoFkdAmCAzH4oJA3V9lChoBmgJaA9DCAzO4O8XM2FAlIaUUpRoFU3oA2gWR0CYIImYBvJjdX2UKGgGaAloD0MIr3rAPGSuWECUhpRSlGgVTegDaBZHQJgiV5kbxVh1fZQoaAZoCWgPQwj6mA8I9F5jQJSGlFKUaBVN6ANoFkdAmCLZ7w8W9HV9lChoBmgJaA9DCNOiPsmdVmxAlIaUUpRoFU3bA2gWR0CYJFHq/ub7dX2UKGgGaAloD0MIx/Xv+syZY0CUhpRSlGgVTegDaBZHQJgul+9alk91fZQoaAZoCWgPQwhgBmNEomRiQJSGlFKUaBVN6ANoFkdAmC7L9Q40dnV9lChoBmgJaA9DCAYQPpToRWFAlIaUUpRoFU3oA2gWR0CYL+VtXPqtdX2UKGgGaAloD0MIKzOl9bcEYkCUhpRSlGgVTegDaBZHQJg0D4M4LkV1fZQoaAZoCWgPQwi9jjhkAw9hQJSGlFKUaBVN6ANoFkdAmENbDVH4GnV9lChoBmgJaA9DCPkwe9n2y2JAlIaUUpRoFU3oA2gWR0CYSTZk078vdX2UKGgGaAloD0MIVyO70rIKZ0CUhpRSlGgVTegDaBZHQJhRjAzpHI91fZQoaAZoCWgPQwjlmZfDbmdhQJSGlFKUaBVN6ANoFkdAmFGgA6uGK3V9lChoBmgJaA9DCFUzaymgXmFAlIaUUpRoFU3oA2gWR0CYWpbnX/YKdX2UKGgGaAloD0MIyOvBpHieZUCUhpRSlGgVTegDaBZHQJhbuHYYixF1fZQoaAZoCWgPQwgPt0PD4lNkQJSGlFKUaBVN6ANoFkdAmHTi5I6KcnV9lChoBmgJaA9DCA4TDVLwb1xAlIaUUpRoFU3oA2gWR0CYeyqIacZtdX2UKGgGaAloD0MI06V/SSqhX0CUhpRSlGgVTegDaBZHQJh7kDp1RtR1fZQoaAZoCWgPQwipFDsah5lgQJSGlFKUaBVN6ANoFkdAmH1v0qYqonV9lChoBmgJaA9DCG5OJQPAcGBAlIaUUpRoFU3oA2gWR0CYffpAD7qIdX2UKGgGaAloD0MIELIsmHggZUCUhpRSlGgVTegDaBZHQJh/UfnwG4Z1fZQoaAZoCWgPQwgI5BJHHpRdQJSGlFKUaBVN6ANoFkdAmIldjPOY6XV9lChoBmgJaA9DCF/waU5e/mRAlIaUUpRoFU3oA2gWR0CYiZIjW07bdX2UKGgGaAloD0MIGRwlr84vXECUhpRSlGgVTegDaBZHQJiKnaZhKDl1fZQoaAZoCWgPQwgwoYLDC0FjQJSGlFKUaBVN6ANoFkdAmI6pLIxQBXV9lChoBmgJaA9DCDTZP08D8F9AlIaUUpRoFU3oA2gWR0CYnfgSvkimdX2UKGgGaAloD0MIup7ouvCAY0CUhpRSlGgVTegDaBZHQJilBh1DBuZ1fZQoaAZoCWgPQwir6uV3mlFlQJSGlFKUaBVN6ANoFkdAmK1ffKp1inV9lChoBmgJaA9DCG3H1F1ZGmFAlIaUUpRoFU3oA2gWR0CYrXHAymALdX2UKGgGaAloD0MI12fO+pRGXkCUhpRSlGgVTegDaBZHQJi0dUipvP11fZQoaAZoCWgPQwi4dMx5xmZeQJSGlFKUaBVN6ANoFkdAmLVT81n/UHV9lChoBmgJaA9DCCv7rgh+BmVAlIaUUpRoFU3oA2gWR0CYzN/ViF0xdX2UKGgGaAloD0MINbdCWI3JY0CUhpRSlGgVTegDaBZHQJjRz50r9VF1fZQoaAZoCWgPQwjwGB772QdmQJSGlFKUaBVN6ANoFkdAmNIeOjqOcXV9lChoBmgJaA9DCNTS3AphWWhAlIaUUpRoFU3oA2gWR0CY07rfcer/dX2UKGgGaAloD0MIKsk6HN0gY0CUhpRSlGgVTegDaBZHQJjUOAoXsPd1fZQoaAZoCWgPQwjIYTB/hWxfQJSGlFKUaBVN6ANoFkdAmNWUMoc7yXV9lChoBmgJaA9DCJxQiIDDWGRAlIaUUpRoFU3oA2gWR0CY30dgv115dX2UKGgGaAloD0MIlWOyuH9RYkCUhpRSlGgVTegDaBZHQJjfgxM36yl1fZQoaAZoCWgPQwjpmzQNCl1gQJSGlFKUaBVN6ANoFkdAmOC9Gqgh83V9lChoBmgJaA9DCJ1Jm6p79WJAlIaUUpRoFU3oA2gWR0CY5JoH9m6HdX2UKGgGaAloD0MI/gsEATJeYECUhpRSlGgVTegDaBZHQJjyCf7Jnxt1fZQoaAZoCWgPQwhT6Sec3exiQJSGlFKUaBVN6ANoFkdAmPboKlYU4HV9lChoBmgJaA9DCNqu0AfLSGRAlIaUUpRoFU3oA2gWR0CY/apZwGW2dX2UKGgGaAloD0MIOjyE8dMAXkCUhpRSlGgVTegDaBZHQJj9uuHN5dJ1fZQoaAZoCWgPQwg3+pgPCBxkQJSGlFKUaBVN6ANoFkdAmQTYUBXCCXV9lChoBmgJaA9DCMzvNJnx2mRAlIaUUpRoFU3oA2gWR0CZBbZcs189dX2UKGgGaAloD0MID+85sByRXUCUhpRSlGgVTegDaBZHQJkKPa11GLF1fZQoaAZoCWgPQwh4X5ULFY1iQJSGlFKUaBVN6ANoFkdAmSHX6l+Ey3V9lChoBmgJaA9DCHCUvDrHu2FAlIaUUpRoFU3oA2gWR0CZIiRBNVR2dX2UKGgGaAloD0MIPN7kt+igY0CUhpRSlGgVTegDaBZHQJkjsCEHt4R1fZQoaAZoCWgPQwjmPjkKkJViQJSGlFKUaBVN6ANoFkdAmSQag7HQyHV9lChoBmgJaA9DCNrFNNM9lGNAlIaUUpRoFU3oA2gWR0CZJVAG0NSZdX2UKGgGaAloD0MIKETAIdSlYECUhpRSlGgVTegDaBZHQJkuI6XBxgl1fZQoaAZoCWgPQwgjvD0IgU5nQJSGlFKUaBVN6ANoFkdAmS5SobXHznV9lChoBmgJaA9DCCGvB5Ni92FAlIaUUpRoFU3oA2gWR0CZL1dOqNp/dX2UKGgGaAloD0MISpaTUHrNZ0CUhpRSlGgVTegDaBZHQJkzPBXS0Bx1fZQoaAZoCWgPQwjs+ZrlskFhQJSGlFKUaBVN6ANoFkdAmUNKAe7tiXV9lChoBmgJaA9DCCNnYU87Z2ZAlIaUUpRoFU3oA2gWR0CZS1wcHWz4dX2UKGgGaAloD0MI8E+pEmVuXECUhpRSlGgVTegDaBZHQJlYWHrQgLZ1fZQoaAZoCWgPQwgv3SQGgUtfQJSGlFKUaBVN6ANoFkdAmVh9ozvZy3V9lChoBmgJaA9DCFCnPLqRKWFAlIaUUpRoFU3oA2gWR0CZZabGFSKndX2UKGgGaAloD0MIrRVtjnMnZ0CUhpRSlGgVTegDaBZHQJlm7MfRu0l1fZQoaAZoCWgPQwhMqODwgiNiQJSGlFKUaBVN6ANoFkdAmW29ZFG5MHV9lChoBmgJaA9DCLn8h/RbwWVAlIaUUpRoFU3oA2gWR0CZhP9CeEqUdX2UKGgGaAloD0MI1gJ7TCTvYUCUhpRSlGgVTegDaBZHQJmFTNUwSJ11fZQoaAZoCWgPQwjYuP5dn5JiQJSGlFKUaBVN6ANoFkdAmYbcvduYQnV9lChoBmgJaA9DCBxfe2bJ/mBAlIaUUpRoFU3oA2gWR0CZh03NcGC7dX2UKGgGaAloD0MIU7DG2fSgYECUhpRSlGgVTegDaBZHQJmIkKfFrEd1fZQoaAZoCWgPQwjH8UOlEXZhQJSGlFKUaBVN6ANoFkdAmZE3RCx/u3V9lChoBmgJaA9DCP+Xa9ECbmFAlIaUUpRoFU3oA2gWR0CZkWVjZteldX2UKGgGaAloD0MI/isrTcreZkCUhpRSlGgVTegDaBZHQJmSa0Y0l7d1fZQoaAZoCWgPQwj8witJnltmQJSGlFKUaBVN6ANoFkdAmZbVpXZGrnV9lChoBmgJaA9DCN+LL9pjBGVAlIaUUpRoFU3oA2gWR0CZpf5+pfhNdX2UKGgGaAloD0MIIc1YNB0BYkCUhpRSlGgVTegDaBZHQJmrTQC0WuZ1fZQoaAZoCWgPQwhha7bykvNkQJSGlFKUaBVN6ANoFkdAmbMbojfNzXV9lChoBmgJaA9DCInuWddoBV1AlIaUUpRoFU3oA2gWR0CZsyzmwJPZdX2UKGgGaAloD0MImUnUC757YkCUhpRSlGgVTegDaBZHQJm6PDXOGCZ1fZQoaAZoCWgPQwimCkYldchlQJSGlFKUaBVN6ANoFkdAmbscsYl6aHV9lChoBmgJaA9DCA0zNJ6IhGVAlIaUUpRoFU3oA2gWR0CZv7cVgx8EdX2UKGgGaAloD0MIMzSeCGKiZ0CUhpRSlGgVTegDaBZHQJnX1jwx33Z1fZQoaAZoCWgPQwgqOLwgIiJkQJSGlFKUaBVN6ANoFkdAmdgn4fwI+nV9lChoBmgJaA9DCFlS7j7HaGNAlIaUUpRoFU3oA2gWR0CZ2dNVR1oydX2UKGgGaAloD0MIYRvxZDfHZECUhpRSlGgVTegDaBZHQJnaTZzxPO91fZQoaAZoCWgPQwifc7frJQtkQJSGlFKUaBVN6ANoFkdAmduiV0Lc9HV9lChoBmgJaA9DCKOP+YBApGJAlIaUUpRoFU3oA2gWR0CZ5Smmce8xdX2UKGgGaAloD0MId/NUh1yRYkCUhpRSlGgVTegDaBZHQJnlWxJNCZ51fZQoaAZoCWgPQwj+8PPfg9RkQJSGlFKUaBVN6ANoFkdAmeZm9L6DXnV9lChoBmgJaA9DCCu9NhsrEUZAlIaUUpRoFU0MAWgWR0CZ6eb961LKdX2UKGgGaAloD0MIOsssQjHcY0CUhpRSlGgVTegDaBZHQJnqXJOnEVF1fZQoaAZoCWgPQwgF+kSeJGpkQJSGlFKUaBVN6ANoFkdAmffZ6IFeOXV9lChoBmgJaA9DCO0pOSd2FGNAlIaUUpRoFU3oA2gWR0CZ/MLHdXT3dX2UKGgGaAloD0MIVFT9SuffX0CUhpRSlGgVTegDaBZHQJoFtyGSIP91fZQoaAZoCWgPQwiUTE7tjPNhQJSGlFKUaBVN6ANoFkdAmgXOoxYaHnV9lChoBmgJaA9DCO+s3XahbGZAlIaUUpRoFU3oA2gWR0CaEAb0voNedX2UKGgGaAloD0MIeO49XHK+XkCUhpRSlGgVTegDaBZHQJoQ490Rvm51fZQoaAZoCWgPQwgiVKnZg+RjQJSGlFKUaBVN6ANoFkdAmhWRl18stnV9lChoBmgJaA9DCDM0ngjiXGZAlIaUUpRoFU3oA2gWR0CaGmI4EOiGdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (249 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 249.0060865094444, "std_reward": 13.06984628048171, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-08T22:35:34.618274"}
|