msullivan commited on
Commit
a72cd66
1 Parent(s): 590a590

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: 'Palestinians throughout the West Bank know that the arrival of a bulldozer
12
+ means the same thing time and time again: "You have 24 hours to flee, or we will
13
+ shoot you." There are countless towns/villages/communities that have faced demolitions
14
+ by the IOF throughout the decades of Israel''s existence, I couldn''t even begin
15
+ to name all of them here.'
16
+ - text: 'For now, let?s remember a few pertinent points about a ceasefire in the Israel-Hamas
17
+ war:'
18
+ - text: Would UNC have to then divest from portfolio boosting stocks like Amazon or
19
+ even Coca-Cola since Israelis buy the soft drink?
20
+ - text: The Armenian quarter is not safe from settler encroachment either, as demolitions
21
+ in the West Bank continue, real estate companies have sent in settlers and bulldozers
22
+ to steal land belonging to Armenian Church property and Several Armenian families.
23
+ - text: In response, Intel has said that profit margins could return to historically
24
+ high levels within five years.
25
+ pipeline_tag: text-classification
26
+ inference: true
27
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
28
+ ---
29
+
30
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
31
+
32
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
33
+
34
+ The model has been trained using an efficient few-shot learning technique that involves:
35
+
36
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
37
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
38
+
39
+ ## Model Details
40
+
41
+ ### Model Description
42
+ - **Model Type:** SetFit
43
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
44
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
45
+ - **Maximum Sequence Length:** 512 tokens
46
+ - **Number of Classes:** 3 classes
47
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
48
+ <!-- - **Language:** Unknown -->
49
+ <!-- - **License:** Unknown -->
50
+
51
+ ### Model Sources
52
+
53
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
54
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
55
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
56
+
57
+ ### Model Labels
58
+ | Label | Examples |
59
+ |:---------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
60
+ | critical | <ul><li>' * Walk out from work and/or school * Picket Israeli embassies and consulates * Picket against companies that profit from Israel?s occupation of Palestine (Lockheed Martin, Boeing, Raytheon, Northrop Grumman, General Dynamics, Elbit Systems) * Host speak outs * Wear kuffiyehs * Wear black armbands'</li><li>"(Nov. 2) Thread of demonstrations in solidarity with Palestinians, via @LexiAlex: U.S., U.K., U.S., U.K., South Africa, Australia, Canada, U.S. Cool and all but I don't think Raytheon cares there's blood on their hands."</li><li>'99% of computers have intel processors, 100% of which are made with Israeli tech, 99% of which are manufactured in israel lmao and that?s just intel!'</li></ul> |
61
+ | neutral | <ul><li>" Intel secures $3.25B Israeli gov't grant to build $25B chip fab in Israel amid ongoing tensions : Read more"</li><li>'? Austin noted some defense contractors have required workers to take on additional shifts to keep up with production rates.'</li><li>'>?Germany?s leading role in NATO matters at this critical moment for European security,?'</li></ul> |
62
+ | negative | <ul><li>'? Sister of Israeli hostage Elad Katzir says her brother was murdered in captivity, and his body was recovered in Gaza during a military rescue operation.'</li><li>'"I think this is something that goes beyond what you would normally consider politics, in the sense that it\'s been hard for anyone to keep up with the rest of the world, and ignore the fact that every single university in Gaza has been flattened, the fact that hospitals have been destroyed, the fact that 14,500 children have died." The event ran two and a half-hours, and not without dissent from a boisterous group of counter-protestors along the west side of the plaza, less organized, shouting "USA," "Take a shower," "Go back to Russia" and "Stop supporting terrorism," some literally wrapped in U.'</li><li>'"There\'s been panic everywhere - even here in Khan Younis where the bombing was less - as people try to reach family members in other areas to check they are safe, but the phones have been cut off." There was anger as well as fear from the families of the Gaza hostages.'</li></ul> |
63
+
64
+ ## Uses
65
+
66
+ ### Direct Use for Inference
67
+
68
+ First install the SetFit library:
69
+
70
+ ```bash
71
+ pip install setfit
72
+ ```
73
+
74
+ Then you can load this model and run inference.
75
+
76
+ ```python
77
+ from setfit import SetFitModel
78
+
79
+ # Download from the 🤗 Hub
80
+ model = SetFitModel.from_pretrained("setfit_model_id")
81
+ # Run inference
82
+ preds = model("For now, let?s remember a few pertinent points about a ceasefire in the Israel-Hamas war:")
83
+ ```
84
+
85
+ <!--
86
+ ### Downstream Use
87
+
88
+ *List how someone could finetune this model on their own dataset.*
89
+ -->
90
+
91
+ <!--
92
+ ### Out-of-Scope Use
93
+
94
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
95
+ -->
96
+
97
+ <!--
98
+ ## Bias, Risks and Limitations
99
+
100
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
101
+ -->
102
+
103
+ <!--
104
+ ### Recommendations
105
+
106
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
107
+ -->
108
+
109
+ ## Training Details
110
+
111
+ ### Training Set Metrics
112
+ | Training set | Min | Median | Max |
113
+ |:-------------|:----|:--------|:----|
114
+ | Word count | 7 | 29.3647 | 111 |
115
+
116
+ | Label | Training Sample Count |
117
+ |:---------|:----------------------|
118
+ | critical | 24 |
119
+ | negative | 26 |
120
+ | neutral | 35 |
121
+
122
+ ### Training Hyperparameters
123
+ - batch_size: (16, 2)
124
+ - num_epochs: (1, 16)
125
+ - max_steps: -1
126
+ - sampling_strategy: oversampling
127
+ - body_learning_rate: (2e-05, 1e-05)
128
+ - head_learning_rate: 0.01
129
+ - loss: CosineSimilarityLoss
130
+ - distance_metric: cosine_distance
131
+ - margin: 0.25
132
+ - end_to_end: False
133
+ - use_amp: False
134
+ - warmup_proportion: 0.1
135
+ - seed: 42
136
+ - eval_max_steps: -1
137
+ - load_best_model_at_end: False
138
+
139
+ ### Training Results
140
+ | Epoch | Step | Training Loss | Validation Loss |
141
+ |:------:|:----:|:-------------:|:---------------:|
142
+ | 0.0034 | 1 | 0.3409 | - |
143
+ | 0.1684 | 50 | 0.1854 | - |
144
+ | 0.3367 | 100 | 0.0944 | - |
145
+ | 0.5051 | 150 | 0.035 | - |
146
+ | 0.6734 | 200 | 0.0021 | - |
147
+ | 0.8418 | 250 | 0.0011 | - |
148
+
149
+ ### Framework Versions
150
+ - Python: 3.10.6
151
+ - SetFit: 1.0.3
152
+ - Sentence Transformers: 3.0.0
153
+ - Transformers: 4.35.2
154
+ - PyTorch: 2.2.0
155
+ - Datasets: 2.14.4
156
+ - Tokenizers: 0.15.2
157
+
158
+ ## Citation
159
+
160
+ ### BibTeX
161
+ ```bibtex
162
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
163
+ doi = {10.48550/ARXIV.2209.11055},
164
+ url = {https://arxiv.org/abs/2209.11055},
165
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
166
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
167
+ title = {Efficient Few-Shot Learning Without Prompts},
168
+ publisher = {arXiv},
169
+ year = {2022},
170
+ copyright = {Creative Commons Attribution 4.0 International}
171
+ }
172
+ ```
173
+
174
+ <!--
175
+ ## Glossary
176
+
177
+ *Clearly define terms in order to be accessible across audiences.*
178
+ -->
179
+
180
+ <!--
181
+ ## Model Card Authors
182
+
183
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
184
+ -->
185
+
186
+ <!--
187
+ ## Model Card Contact
188
+
189
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
190
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "critical",
4
+ "negative",
5
+ "neutral"
6
+ ],
7
+ "normalize_embeddings": false
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e60dbca27c7d20b9438bb2b80a833592eff95f5f9cbec59ef135b48e1a6c6722
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ddf939172582db3e8a427ab5cfc9d5006f82dd6de629151fe66f1f6b4d4a490
3
+ size 19391
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff