Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1846.75 +/- 56.57
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63ae562f2df7758507944c1fc6ec7dbd8cf2cf72f7fd7405c3e77c04e2ea2a05
|
3 |
+
size 129264
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f93a8edea60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f93a8edeaf0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f93a8edeb80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f93a8edec10>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f93a8edeca0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f93a8eded30>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f93a8ededc0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f93a8edee50>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f93a8edeee0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f93a8edef70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f93a8ee1040>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f93a8ee10d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f93a8edfa00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1680656637007572198,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOhnTj8stVo/bjDEvqaWbz+XNNk/5oWcP1qIOT8XBke/meQ8P7xgUb9p7ak/HYY5v8K9+T7wvpc/4K9cvxQ4Bz7DXik/LmB3P88h/T62m6Y8ut6Kvj7ceb8kPF8/Y0SDvhFhQr+kxDI/rOyJPpnoMT/Yeks+Rzh+P8ihHr8lDtk+ZAC9PlnASz/7OYc/ynB+PjdJvr2yh6U/uyJTP3yKj75C+Tw/goaPP7nAiL9Yl9Q+9h8qPt37WD+T9P0+4ynJvLXwqz/6Rmq+HX9oPpFCBj8RYUK/pMQyP0iUbcA6L7i/GAz2PuUtLD9RIf+9jDonPw7sTD/Y/oY/Q1eRP+xFtL24N0g+eH5dv/THQz/mHAC/Q5EdP6+ZOz9HCq2/HsaaPgoW9j76/8K+7vf8PmZB8TxMeSY/M/ZXv8LTkD5o2qs+EWFCv6TEMj+s7Ik+megxPwnWsD6zaSo/gvvsvWmJPD81Jkw/vKuBP1gqPz9JdYa+G/MDP/VOa76fppc/n4RKu7wqDL22gx8/79OHvx7pAj4B3QU/xTTLvuxy/D7zNfs8Xh1aP+fDgL/Yvh8/+T3jPhFhQr+kxDI/rOyJPpnoMT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABSQYm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtt4zvAAAAABMs+e/AAAAAFYPib0AAAAAz6r0PwAAAADjAgq+AAAAAA3n2T8AAAAApDW4vAAAAAALFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALPfGNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA23CL0AAAAAdnMAwAAAAABUqsE9AAAAAIbB/z8AAAAA8ex4PQAAAADC1+o/AAAAAH6ff70AAAAAzejovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFpEE7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAg/wc+AAAAAJUg6b8AAAAAgN1UPQAAAADJCPA/AAAAACVEXT0AAAAAYIruPwAAAABpU5M9AAAAAFBL878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPDqu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnpxpvQAAAAC/n+e/AAAAAFkswr0AAAAAL/rwPwAAAABPe7S9AAAAAH0k5D8AAAAALNS7PQAAAAA3q/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpUwAOrhiuMAWyUTegDjAF0lEdAq+9sOskpqnV9lChoBkdAnGbWxlg+hWgHTegDaAhHQKvypZV4oql1fZQoaAZHQJ4etIOH311oB03oA2gIR0Cr85Rq46OpdX2UKGgGR0CcabVf/m1ZaAdN6ANoCEdAq/UdO2y9mHV9lChoBkdAmnIj6JqIrWgHTegDaAhHQKv+e98qnWJ1fZQoaAZHQJfkv/R3NcJoB03oA2gIR0CsAZij1wo9dX2UKGgGR0CZ/IDmKZUlaAdN6ANoCEdArAJHpGFzuHV9lChoBkdAmscHHaN+9mgHTegDaAhHQKwDZvYODrZ1fZQoaAZHQJ9+LErGza9oB03oA2gIR0CsCnwlSjxkdX2UKGgGR0Cb1nHR1HOKaAdN6ANoCEdArA2K9wm3OXV9lChoBkdAnDrSlBQem2gHTegDaAhHQKwONb6guh91fZQoaAZHQJ0yAREnb7FoB03oA2gIR0CsD0+KjzqbdX2UKGgGR0CghUIakyk9aAdN6ANoCEdArBmEUCaJAXV9lChoBkdAoB13t8eCCmgHTegDaAhHQKwcyPJ7sv91fZQoaAZHQKCsnRv3rUtoB03oA2gIR0CsHWx28qWkdX2UKGgGR0ChC8Adfb9IaAdN6ANoCEdArB6DqyGBWnV9lChoBkdAnokXFUADJWgHTegDaAhHQKwlsR5C4SZ1fZQoaAZHQKEjkR3/xUhoB03oA2gIR0CsKMRDLKV6dX2UKGgGR0CfCanQ6ZH/aAdN6ANoCEdArCl2hmGucXV9lChoBkdAm8tJcophF2gHTegDaAhHQKwqniADq4Z1fZQoaAZHQJ54Gz+m3vxoB03oA2gIR0CsM1eso2GZdX2UKGgGR0CfKy876pHaaAdN6ANoCEdArDgJiTdLx3V9lChoBkdAnSHVWOp84WgHTegDaAhHQKw4uAn2Iwd1fZQoaAZHQJlYio0hvBJoB03oA2gIR0CsOcqSxJNCdX2UKGgGR0Cdi5RtxdY5aAdN6ANoCEdArEDt4NZvDXV9lChoBkdAnZ4xPwd8zGgHTegDaAhHQKxD/8ma6SV1fZQoaAZHQJ6b8HZ9NN9oB03oA2gIR0CsRLS4FzMidX2UKGgGR0Ce0+2EkB0ZaAdN6ANoCEdArEXJBsyi23V9lChoBkdAm9zdXxOLzmgHTegDaAhHQKxNYdYGMXJ1fZQoaAZHQJtOZo4+8oRoB03oA2gIR0CsUgRQBPsSdX2UKGgGR0Cc1nrqt5lfaAdN6ANoCEdArFMKsfaHsXV9lChoBkdAngIfVVghKWgHTegDaAhHQKxUwpEQXhx1fZQoaAZHQJ9E/H2h7E5oB03oA2gIR0CsXDI68xsVdX2UKGgGR0CeP2hl18suaAdN6ANoCEdArF9eF+NLlHV9lChoBkdAnqSZJ04io2gHTegDaAhHQKxgDOwgTyt1fZQoaAZHQJ6YZGFzuF9oB03oA2gIR0CsYSg4n4O+dX2UKGgGR0CelqXlr/KhaAdN6ANoCEdArGh+7YkE93V9lChoBkdAl0FkBsANomgHTegDaAhHQKxsXi8WbgF1fZQoaAZHQJt8CkcjqwBoB03oA2gIR0CsbU78m8dxdX2UKGgGR0CZ3Yhf0EowaAdN6ANoCEdArG8EvGp++nV9lChoBkdAnUQ0/0NBnmgHTegDaAhHQKx34psGgSR1fZQoaAZHQJgdC1JDmbNoB03oA2gIR0CseuiGetjkdX2UKGgGR0CcA4euV5bAaAdN6ANoCEdArHuW4NI9T3V9lChoBkdAmC2tWQwK0GgHTegDaAhHQKx8vS/CZWt1fZQoaAZHQJwU9IkJKJ5oB03oA2gIR0Csg7VEmY0EdX2UKGgGR0CcorbkwN9ZaAdN6ANoCEdArIbS5d4VynV9lChoBkdAmiABl+Vkc2gHTegDaAhHQKyHdaoMrmR1fZQoaAZHQJ4d/eFcpspoB03oA2gIR0CsiM0MgEEDdX2UKGgGR0CfQCb+cYqHaAdN6ANoCEdArJLrJOnEVHV9lChoBkdAnM5vvnbItGgHTegDaAhHQKyV8UypJf91fZQoaAZHQJ9jaL1mJ3xoB03oA2gIR0Cslp3HzYmLdX2UKGgGR0CeoP0XP7emaAdN6ANoCEdArJetOZb6g3V9lChoBkdAmxAGD6Fds2gHTegDaAhHQKyexkH2RJV1fZQoaAZHQJkZo7ZFoctoB03oA2gIR0CsodE/bCaadX2UKGgGR0CZSVQWN3nqaAdN6ANoCEdArKJ7IFNcnnV9lChoBkdAmJW57ojfN2gHTegDaAhHQKyjh3/xUed1fZQoaAZHQJgAdkQPI4loB03oA2gIR0CsrNTpxFRYdX2UKGgGR0CZ7TPLgXMyaAdN6ANoCEdArLEVjAi3X3V9lChoBkdAmvoS8rZrYWgHTegDaAhHQKyx0B0ZFXt1fZQoaAZHQJsF4igTRIBoB03oA2gIR0CssulyR0U5dX2UKGgGR0CchnMaS9uhaAdN6ANoCEdArLn8OoYNzHV9lChoBkdAm236oESuhmgHTegDaAhHQKy9CNWEK3N1fZQoaAZHQJvlXbtZ3cJoB03oA2gIR0Csva4EnssydX2UKGgGR0Cbn7UFB6a9aAdN6ANoCEdArL7BJoTPB3V9lChoBkdAnOlvDtPYWmgHTegDaAhHQKzGTIwM6R11fZQoaAZHQJ6k2WhRIjJoB03oA2gIR0Csyt0JfICEdX2UKGgGR0CfHVBClabGaAdN6ANoCEdArMvrNliBoXV9lChoBkdAnvEuyiVSoGgHTegDaAhHQKzNmFj/dZd1fZQoaAZHQJ0brxb0OExoB03oA2gIR0Cs1MqGDcubdX2UKGgGR0CdImP8AJb/aAdN6ANoCEdArNfsYdhiLHV9lChoBkdAnpAcynDR+mgHTegDaAhHQKzYmpc5bQl1fZQoaAZHQKByEDr7fpFoB03oA2gIR0Cs2cT3IuGsdX2UKGgGR0CfESOmR/3GaAdN6ANoCEdArODsSwnpjnV9lChoBkdAnmPN3KSxJWgHTegDaAhHQKzlARjjJdV1fZQoaAZHQJ4bvXJ5miBoB03oA2gIR0Cs5fditq59dX2UKGgGR0CdW9+aBqbjaAdN6ANoCEdArOetke6qbXV9lChoBkdAmbF/07KaHGgHTegDaAhHQKzwZftx+8Z1fZQoaAZHQJj8wV2zOX5oB03oA2gIR0Cs83vUKArhdX2UKGgGR0CcQvQ6IWP+aAdN6ANoCEdArPQnz+WGAXV9lChoBkdAnCW8HbAUL2gHTegDaAhHQKz1QR2bG3p1fZQoaAZHQJqIcyylenhoB03oA2gIR0Cs/G9k8RthdX2UKGgGR0CYycI2wV0taAdN6ANoCEdArP+GFvhqCnV9lChoBkdAmzgFDF6zFGgHTegDaAhHQK0ASOe8PFx1fZQoaAZHQJwRn779AHFoB03oA2gIR0CtAeAtOEdvdX2UKGgGR0CZD3+kxh2GaAdN6ANoCEdArQu0tbs4UHV9lChoBkdAmGaM052hZmgHTegDaAhHQK0O0k8ifQN1fZQoaAZHQJhKZOZb6gxoB03oA2gIR0CtD30A1ejVdX2UKGgGR0CXz0F/hESeaAdN6ANoCEdArRCXtdAxBXV9lChoBkdAmW5jQiRnvmgHTegDaAhHQK0X97tzCDV1fZQoaAZHQJcz5NqQA+9oB03oA2gIR0CtGyPKMefadX2UKGgGR0CZHPvH93r2aAdN6ANoCEdArRvSnzg/DHV9lChoBkdAmXwxwl0HQmgHTegDaAhHQK0c7KZlWfd1fZQoaAZHQJnJTovBacJoB03oA2gIR0CtJweyzHCGdX2UKGgGR0CcsdolUp/gaAdN6ANoCEdArSqFsUIsy3V9lChoBkdAmkju1Bt1p2gHTegDaAhHQK0rNX7Lt/p1fZQoaAZHQJ0lYlVtGd9oB03oA2gIR0CtLFCf6Gg0dX2UKGgGR0CdRxMlTm4iaAdN6ANoCEdArTNOZXuE3HV9lChoBkdAn0SFj/dZaGgHTegDaAhHQK02fEIgNgB1fZQoaAZHQJ1b0AyVObloB03oA2gIR0CtNyUGmk30dX2UKGgGR0Cewi2oegctaAdN6ANoCEdArTg30f5k9XVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cbffd1dbf2533ec0c2e34bbabdadbedaf0f114fe62d389679cefdf750465abeb
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:23ab4fe6a6b9811b26177da292c494c97bfa5d30c1fd8202998943b99435f6e5
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f93a8edea60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f93a8edeaf0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f93a8edeb80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f93a8edec10>", "_build": "<function ActorCriticPolicy._build at 0x7f93a8edeca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f93a8eded30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f93a8ededc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f93a8edee50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f93a8edeee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f93a8edef70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f93a8ee1040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f93a8ee10d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f93a8edfa00>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680656637007572198, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOhnTj8stVo/bjDEvqaWbz+XNNk/5oWcP1qIOT8XBke/meQ8P7xgUb9p7ak/HYY5v8K9+T7wvpc/4K9cvxQ4Bz7DXik/LmB3P88h/T62m6Y8ut6Kvj7ceb8kPF8/Y0SDvhFhQr+kxDI/rOyJPpnoMT/Yeks+Rzh+P8ihHr8lDtk+ZAC9PlnASz/7OYc/ynB+PjdJvr2yh6U/uyJTP3yKj75C+Tw/goaPP7nAiL9Yl9Q+9h8qPt37WD+T9P0+4ynJvLXwqz/6Rmq+HX9oPpFCBj8RYUK/pMQyP0iUbcA6L7i/GAz2PuUtLD9RIf+9jDonPw7sTD/Y/oY/Q1eRP+xFtL24N0g+eH5dv/THQz/mHAC/Q5EdP6+ZOz9HCq2/HsaaPgoW9j76/8K+7vf8PmZB8TxMeSY/M/ZXv8LTkD5o2qs+EWFCv6TEMj+s7Ik+megxPwnWsD6zaSo/gvvsvWmJPD81Jkw/vKuBP1gqPz9JdYa+G/MDP/VOa76fppc/n4RKu7wqDL22gx8/79OHvx7pAj4B3QU/xTTLvuxy/D7zNfs8Xh1aP+fDgL/Yvh8/+T3jPhFhQr+kxDI/rOyJPpnoMT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABSQYm2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtt4zvAAAAABMs+e/AAAAAFYPib0AAAAAz6r0PwAAAADjAgq+AAAAAA3n2T8AAAAApDW4vAAAAAALFgDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALPfGNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA23CL0AAAAAdnMAwAAAAABUqsE9AAAAAIbB/z8AAAAA8ex4PQAAAADC1+o/AAAAAH6ff70AAAAAzejovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFpEE7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAg/wc+AAAAAJUg6b8AAAAAgN1UPQAAAADJCPA/AAAAACVEXT0AAAAAYIruPwAAAABpU5M9AAAAAFBL878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADPDqu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAnpxpvQAAAAC/n+e/AAAAAFkswr0AAAAAL/rwPwAAAABPe7S9AAAAAH0k5D8AAAAALNS7PQAAAAA3q/G/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJpUwAOrhiuMAWyUTegDjAF0lEdAq+9sOskpqnV9lChoBkdAnGbWxlg+hWgHTegDaAhHQKvypZV4oql1fZQoaAZHQJ4etIOH311oB03oA2gIR0Cr85Rq46OpdX2UKGgGR0CcabVf/m1ZaAdN6ANoCEdAq/UdO2y9mHV9lChoBkdAmnIj6JqIrWgHTegDaAhHQKv+e98qnWJ1fZQoaAZHQJfkv/R3NcJoB03oA2gIR0CsAZij1wo9dX2UKGgGR0CZ/IDmKZUlaAdN6ANoCEdArAJHpGFzuHV9lChoBkdAmscHHaN+9mgHTegDaAhHQKwDZvYODrZ1fZQoaAZHQJ9+LErGza9oB03oA2gIR0CsCnwlSjxkdX2UKGgGR0Cb1nHR1HOKaAdN6ANoCEdArA2K9wm3OXV9lChoBkdAnDrSlBQem2gHTegDaAhHQKwONb6guh91fZQoaAZHQJ0yAREnb7FoB03oA2gIR0CsD0+KjzqbdX2UKGgGR0CghUIakyk9aAdN6ANoCEdArBmEUCaJAXV9lChoBkdAoB13t8eCCmgHTegDaAhHQKwcyPJ7sv91fZQoaAZHQKCsnRv3rUtoB03oA2gIR0CsHWx28qWkdX2UKGgGR0ChC8Adfb9IaAdN6ANoCEdArB6DqyGBWnV9lChoBkdAnokXFUADJWgHTegDaAhHQKwlsR5C4SZ1fZQoaAZHQKEjkR3/xUhoB03oA2gIR0CsKMRDLKV6dX2UKGgGR0CfCanQ6ZH/aAdN6ANoCEdArCl2hmGucXV9lChoBkdAm8tJcophF2gHTegDaAhHQKwqniADq4Z1fZQoaAZHQJ54Gz+m3vxoB03oA2gIR0CsM1eso2GZdX2UKGgGR0CfKy876pHaaAdN6ANoCEdArDgJiTdLx3V9lChoBkdAnSHVWOp84WgHTegDaAhHQKw4uAn2Iwd1fZQoaAZHQJlYio0hvBJoB03oA2gIR0CsOcqSxJNCdX2UKGgGR0Cdi5RtxdY5aAdN6ANoCEdArEDt4NZvDXV9lChoBkdAnZ4xPwd8zGgHTegDaAhHQKxD/8ma6SV1fZQoaAZHQJ6b8HZ9NN9oB03oA2gIR0CsRLS4FzMidX2UKGgGR0Ce0+2EkB0ZaAdN6ANoCEdArEXJBsyi23V9lChoBkdAm9zdXxOLzmgHTegDaAhHQKxNYdYGMXJ1fZQoaAZHQJtOZo4+8oRoB03oA2gIR0CsUgRQBPsSdX2UKGgGR0Cc1nrqt5lfaAdN6ANoCEdArFMKsfaHsXV9lChoBkdAngIfVVghKWgHTegDaAhHQKxUwpEQXhx1fZQoaAZHQJ9E/H2h7E5oB03oA2gIR0CsXDI68xsVdX2UKGgGR0CeP2hl18suaAdN6ANoCEdArF9eF+NLlHV9lChoBkdAnqSZJ04io2gHTegDaAhHQKxgDOwgTyt1fZQoaAZHQJ6YZGFzuF9oB03oA2gIR0CsYSg4n4O+dX2UKGgGR0CelqXlr/KhaAdN6ANoCEdArGh+7YkE93V9lChoBkdAl0FkBsANomgHTegDaAhHQKxsXi8WbgF1fZQoaAZHQJt8CkcjqwBoB03oA2gIR0CsbU78m8dxdX2UKGgGR0CZ3Yhf0EowaAdN6ANoCEdArG8EvGp++nV9lChoBkdAnUQ0/0NBnmgHTegDaAhHQKx34psGgSR1fZQoaAZHQJgdC1JDmbNoB03oA2gIR0CseuiGetjkdX2UKGgGR0CcA4euV5bAaAdN6ANoCEdArHuW4NI9T3V9lChoBkdAmC2tWQwK0GgHTegDaAhHQKx8vS/CZWt1fZQoaAZHQJwU9IkJKJ5oB03oA2gIR0Csg7VEmY0EdX2UKGgGR0CcorbkwN9ZaAdN6ANoCEdArIbS5d4VynV9lChoBkdAmiABl+Vkc2gHTegDaAhHQKyHdaoMrmR1fZQoaAZHQJ4d/eFcpspoB03oA2gIR0CsiM0MgEEDdX2UKGgGR0CfQCb+cYqHaAdN6ANoCEdArJLrJOnEVHV9lChoBkdAnM5vvnbItGgHTegDaAhHQKyV8UypJf91fZQoaAZHQJ9jaL1mJ3xoB03oA2gIR0Cslp3HzYmLdX2UKGgGR0CeoP0XP7emaAdN6ANoCEdArJetOZb6g3V9lChoBkdAmxAGD6Fds2gHTegDaAhHQKyexkH2RJV1fZQoaAZHQJkZo7ZFoctoB03oA2gIR0CsodE/bCaadX2UKGgGR0CZSVQWN3nqaAdN6ANoCEdArKJ7IFNcnnV9lChoBkdAmJW57ojfN2gHTegDaAhHQKyjh3/xUed1fZQoaAZHQJgAdkQPI4loB03oA2gIR0CsrNTpxFRYdX2UKGgGR0CZ7TPLgXMyaAdN6ANoCEdArLEVjAi3X3V9lChoBkdAmvoS8rZrYWgHTegDaAhHQKyx0B0ZFXt1fZQoaAZHQJsF4igTRIBoB03oA2gIR0CssulyR0U5dX2UKGgGR0CchnMaS9uhaAdN6ANoCEdArLn8OoYNzHV9lChoBkdAm236oESuhmgHTegDaAhHQKy9CNWEK3N1fZQoaAZHQJvlXbtZ3cJoB03oA2gIR0Csva4EnssydX2UKGgGR0Cbn7UFB6a9aAdN6ANoCEdArL7BJoTPB3V9lChoBkdAnOlvDtPYWmgHTegDaAhHQKzGTIwM6R11fZQoaAZHQJ6k2WhRIjJoB03oA2gIR0Csyt0JfICEdX2UKGgGR0CfHVBClabGaAdN6ANoCEdArMvrNliBoXV9lChoBkdAnvEuyiVSoGgHTegDaAhHQKzNmFj/dZd1fZQoaAZHQJ0brxb0OExoB03oA2gIR0Cs1MqGDcubdX2UKGgGR0CdImP8AJb/aAdN6ANoCEdArNfsYdhiLHV9lChoBkdAnpAcynDR+mgHTegDaAhHQKzYmpc5bQl1fZQoaAZHQKByEDr7fpFoB03oA2gIR0Cs2cT3IuGsdX2UKGgGR0CfESOmR/3GaAdN6ANoCEdArODsSwnpjnV9lChoBkdAnmPN3KSxJWgHTegDaAhHQKzlARjjJdV1fZQoaAZHQJ4bvXJ5miBoB03oA2gIR0Cs5fditq59dX2UKGgGR0CdW9+aBqbjaAdN6ANoCEdArOetke6qbXV9lChoBkdAmbF/07KaHGgHTegDaAhHQKzwZftx+8Z1fZQoaAZHQJj8wV2zOX5oB03oA2gIR0Cs83vUKArhdX2UKGgGR0CcQvQ6IWP+aAdN6ANoCEdArPQnz+WGAXV9lChoBkdAnCW8HbAUL2gHTegDaAhHQKz1QR2bG3p1fZQoaAZHQJqIcyylenhoB03oA2gIR0Cs/G9k8RthdX2UKGgGR0CYycI2wV0taAdN6ANoCEdArP+GFvhqCnV9lChoBkdAmzgFDF6zFGgHTegDaAhHQK0ASOe8PFx1fZQoaAZHQJwRn779AHFoB03oA2gIR0CtAeAtOEdvdX2UKGgGR0CZD3+kxh2GaAdN6ANoCEdArQu0tbs4UHV9lChoBkdAmGaM052hZmgHTegDaAhHQK0O0k8ifQN1fZQoaAZHQJhKZOZb6gxoB03oA2gIR0CtD30A1ejVdX2UKGgGR0CXz0F/hESeaAdN6ANoCEdArRCXtdAxBXV9lChoBkdAmW5jQiRnvmgHTegDaAhHQK0X97tzCDV1fZQoaAZHQJcz5NqQA+9oB03oA2gIR0CtGyPKMefadX2UKGgGR0CZHPvH93r2aAdN6ANoCEdArRvSnzg/DHV9lChoBkdAmXwxwl0HQmgHTegDaAhHQK0c7KZlWfd1fZQoaAZHQJnJTovBacJoB03oA2gIR0CtJweyzHCGdX2UKGgGR0CcsdolUp/gaAdN6ANoCEdArSqFsUIsy3V9lChoBkdAmkju1Bt1p2gHTegDaAhHQK0rNX7Lt/p1fZQoaAZHQJ0lYlVtGd9oB03oA2gIR0CtLFCf6Gg0dX2UKGgGR0CdRxMlTm4iaAdN6ANoCEdArTNOZXuE3HV9lChoBkdAn0SFj/dZaGgHTegDaAhHQK02fEIgNgB1fZQoaAZHQJ1b0AyVObloB03oA2gIR0CtNyUGmk30dX2UKGgGR0Cewi2oegctaAdN6ANoCEdArTg30f5k9XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec3cc62c4d743f1b2bc169515e95d27ef8a91ad2908b2a17ba7441e1c28c25c3
|
3 |
+
size 1198892
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1846.7549214965663, "std_reward": 56.5724736878544, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-05T02:18:18.782594"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb8b48c384f8e86361cececa6207aa772c06a20a753f41a716b75e759ba99354
|
3 |
+
size 2136
|