mshibatatt commited on
Commit
ed9e466
1 Parent(s): 979a680

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1289.75 +/- 171.95
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad52c60598becbec969bf1edd4f3220b60cf1b5470f366e6cd38f1a821dd6e28
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a47ecf1f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a47ecf280>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a47ecf310>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a47ecf3a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9a47ecf430>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9a47ecf4c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a47ecf550>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a47ecf5e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9a47ecf670>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a47ecf700>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a47ecf790>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a47ecf820>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f9a47ec6e10>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1676555894257746699,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPn/FT/Axzu/crETvjMmiD8g/82/366mP7t1TL8rmfa+35SqvuROTT8qLTs/T9bCPVgbSz/ygSO/cHQmP41W2Tw2Bxg/Zfutv1qOlr+gnQ6+fvKVv5w3tD42G70/5tQdvaNBND8fqq8+w8QFPzZxg798ZdU+ckxDu8MkHD9vS4U/WvYLv3/MrT/+Qva+wMQyv/vKp76+sd8/0syHPyK0fz43jcM/yA/QPg4SJj+JpQA9wwjDPzCNJ79jP4m/A00Mv6t9KL9kpt8/APq8P1vx1ryjQTQ/H6qvPsPEBT82cYO/sq/SPhOjn749O74+K4zkPm5qn7+noUw/eyEmv5Xy574sMUa+8SeNP4G/Bj/JJCy7LfbSPnkTm771iCc/0+wJQL4USL8uQUi/Rn3HvDLfJT/VHyy/SuYAvl2kJT/PiSU/o0E0Px+qrz7DxAU/NnGDv4eZOL5k+JY+KU1BP5Ol37+fxIg/rV5FvxDbDz/hgBW/1KWsvxsIYMAF4AU95r4evEzjo78RVC/AOED+vgkuQb9/Egk/DwL9PkiJDUBB396+cUShvwEhrb+DwPu9/2BHvxbJtb+PiTrA1/X0v7tLeT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADFAG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApDrVvQAAAABOU/6/AAAAADO5cr0AAAAAcW71PwAAAAA5J4c9AAAAACdD8T8AAAAAFKAFPgAAAABuqfG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASvejtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKbOE70AAAAAGOXzvwAAAAANF3i9AAAAAKnO/D8AAAAA3EXfvQAAAACN/fg/AAAAAM6vlT0AAAAAzbrtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGEhmLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDCNXA9AAAAABfzAMAAAAAAk7TNvQAAAABozfM/AAAAAHzyqb0AAAAABkHuPwAAAAC5FDK9AAAAAC90578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkoUy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP2ubvQAAAAAbrfa/AAAAAOERYL0AAAAAH9zuPwAAAACFIh29AAAAAD6g4T8AAAAAgi3iPQAAAADnE9u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYz6aG5+YuMAWyUTegDjAF0lEdAqr3VihFmWnV9lChoBkdAkuYq6nR9gGgHTegDaAhHQKrDJuwX6691fZQoaAZHQJUOq9cry2BoB03oA2gIR0CqxkwL3K0VdX2UKGgGR0CQrifpD/lyaAdN6ANoCEdAqslpXdTHbXV9lChoBkdAlFreI/JNkGgHTegDaAhHQKrKgTJQtSR1fZQoaAZHQJPiS8dxQzloB03oA2gIR0Cq0ktYB/7SdX2UKGgGR0CS7bnYg7o0aAdN6ANoCEdAqtah+OOsDHV9lChoBkdAknp2LUCq62gHTegDaAhHQKrZqQiA2AJ1fZQoaAZHQJMfeDM/yG1oB03oA2gIR0Cq2qlX7tRfdX2UKGgGR0CS4asS00FbaAdN6ANoCEdAqt/0iQkonnV9lChoBkdAjnRAUL2HtWgHTegDaAhHQKrjDz+3pfR1fZQoaAZHQJEJq1iONo9oB03oA2gIR0Cq5h/s/pt8dX2UKGgGR0CSC0c/dIoWaAdN6ANoCEdAqucuuTzNEHV9lChoBkdAlJsnuRcNY2gHTegDaAhHQKruBhkRSP51fZQoaAZHQH4GMZP2wmpoB03oA2gIR0Cq8u/lIVdpdX2UKGgGR0CVdJycTakAaAdN6ANoCEdAqvZEAYHgP3V9lChoBkdAk+ZN0FKTS2gHTegDaAhHQKr3Tm9xp+N1fZQoaAZHQJR16iM5wOxoB03oA2gIR0Cq/KpNj9XLdX2UKGgGR0CWAsq9oN/faAdN6ANoCEdAqv/t+Zw4sHV9lChoBkdAlnSFtGd7OWgHTegDaAhHQKsC9mmtQsR1fZQoaAZHQJekZdrwe/5oB03oA2gIR0CrA//YjB2wdX2UKGgGR0CZqmO/tY0VaAdN6ANoCEdAqwoCj+Jgs3V9lChoBkdAmVd4zvZyuWgHTegDaAhHQKsOqLWI42l1fZQoaAZHQJkZlBiTdLxoB03oA2gIR0CrEuY/eLvUdX2UKGgGR0CZxqfZmI0qaAdN6ANoCEdAqxPscyWRinV9lChoBkdAmeFJnHvMKWgHTegDaAhHQKsZQEeQuEp1fZQoaAZHQJk/GmxdIG1oB03oA2gIR0CrHGsz/IbPdX2UKGgGR0CY4ELQokRjaAdN6ANoCEdAqx9xZ0Syt3V9lChoBkdAmOdkOVgQYmgHTegDaAhHQKsgcI+nqFB1fZQoaAZHQJgciUUwi7loB03oA2gIR0CrJcfy5I6KdX2UKGgGR0CY8MzAvcrRaAdN6ANoCEdAqyoW6Ae7tnV9lChoBkdAl0TxQrMC92gHTegDaAhHQKsuwneizs11fZQoaAZHQJhG+n1nM+xoB03oA2gIR0CrMGqlP8AJdX2UKGgGR0CYrVuZTho/aAdN6ANoCEdAqzXQKlYU4HV9lChoBkdAmR/3mJWNm2gHTegDaAhHQKs48idJ8OV1fZQoaAZHQJeiGBlMAWBoB03oA2gIR0CrO/q6OHWSdX2UKGgGR0CX9oJYkmhNaAdN6ANoCEdAqz0CsEJSi3V9lChoBkdAmPYkEPlMiGgHTegDaAhHQKtCXjwQUYd1fZQoaAZHQJmyOTpxFRZoB03oA2gIR0CrRkOWjXWfdX2UKGgGR0CZ1Q5vcafjaAdN6ANoCEdAq0rKGYa5w3V9lChoBkdAmSK/vSc9XGgHTegDaAhHQKtMbJcPe551fZQoaAZHQJdjK+Eh7mdoB03oA2gIR0CrUqLK/20zdX2UKGgGR0CUKJyWRigCaAdN6ANoCEdAq1XKqU/wAnV9lChoBkdAlsuws052hmgHTegDaAhHQKtY0nwXqJN1fZQoaAZHQJjUwrtmcvxoB03oA2gIR0CrWeIakyk9dX2UKGgGR0CV74SWZ7XyaAdN6ANoCEdAq19HUnXumnV9lChoBkdAmGuIwyqMnGgHTegDaAhHQKtianjQzDZ1fZQoaAZHQJWiPPLPldVoB03oA2gIR0CrZphK+SKWdX2UKGgGR0CXbUggHNX6aAdN6ANoCEdAq2grlcQiA3V9lChoBkdAlcf1RDTjN2gHTegDaAhHQKtvcBDohZB1fZQoaAZHQJhiz0h/y5JoB03oA2gIR0CrcozyJ9ApdX2UKGgGR0CYpgZNwiqyaAdN6ANoCEdAq3WVbu+h5HV9lChoBkdAmNUEQf6oEWgHTegDaAhHQKt2nf1pTMt1fZQoaAZHQJhbw8DB/I9oB03oA2gIR0Cre9akIomYdX2UKGgGR0CYMOzposZpaAdN6ANoCEdAq37dzIV/MHV9lChoBkdAmTa9C/oJRmgHTegDaAhHQKuCKW+oLoh1fZQoaAZHQJh+xQ9A5aNoB03oA2gIR0Crg6pLdvbXdX2UKGgGR0CWzLU4JeE7aAdN6ANoCEdAq4vIvzvqknV9lChoBkdAmXQ5TZQHiWgHTegDaAhHQKuPK/xlQMx1fZQoaAZHQJkFBPqLS/loB03oA2gIR0CrkjQDvE0jdX2UKGgGR0CY+M6qKgqWaAdN6ANoCEdAq5M7KJVKgHV9lChoBkdAmoupNfw7T2gHTegDaAhHQKuYdgZTAFh1fZQoaAZHQJr6iU6gdwNoB03oA2gIR0Crm5viDM/ydX2UKGgGR0CcIfhIvrWzaAdN6ANoCEdAq56Tu2JBPnV9lChoBkdAmvcD+rELpmgHTegDaAhHQKufoeIVM251fZQoaAZHQJhwZwVCXyBoB03oA2gIR0Crp8RdY4hmdX2UKGgGR0CZ1DCjUNKAaAdN6ANoCEdAq6ulNBWxQnV9lChoBkdAlqkXfuTibWgHTegDaAhHQKuup9XtBv91fZQoaAZHQJWFNqDbrTpoB03oA2gIR0Crr6xiobXIdX2UKGgGR0CXrRr1uivgaAdN6ANoCEdAq7T1lRP423V9lChoBkdAnDEBufmLcmgHTegDaAhHQKu4E5ksjFB1fZQoaAZHQJNa3lCCz1NoB03oA2gIR0Cruxu7YkE+dX2UKGgGR0CX6a9wFTvRaAdN6ANoCEdAq7wZD/lyR3V9lChoBkdAmiKd8zAN5WgHTegDaAhHQKvDAIToMa11fZQoaAZHQJbN5sMy8BdoB03oA2gIR0Crx/LgXMyKdX2UKGgGR0CXTHNYr8R+aAdN6ANoCEdAq8siU9pyqHV9lChoBkdAmUQFMmF8HGgHTegDaAhHQKvMI+xGDth1fZQoaAZHQJ110etCAtpoB03oA2gIR0Cr0YIiTt9hdX2UKGgGR0Cc0rOtW+49aAdN6ANoCEdAq9Snh0hePnV9lChoBkdAmbzTXvphW2gHTegDaAhHQKvXr6By0a91fZQoaAZHQJtAN9H+ZPVoB03oA2gIR0Cr2LKC6H0sdX2UKGgGR0CZ6cF3pwCKaAdN6ANoCEdAq96x99c8knV9lChoBkdAmJMHEVFhHGgHTegDaAhHQKvjcbDMvAZ1fZQoaAZHQJyurpSrHVBoB03oA2gIR0Cr54wZXMhYdX2UKGgGR0CcbgNUwSJ1aAdN6ANoCEdAq+iZm03OwHV9lChoBkdAmiO8i4axYGgHTegDaAhHQKvt+0cfeUJ1fZQoaAZHQJnNQw7DEWJoB03oA2gIR0Cr8SHp8neBdX2UKGgGR0CYhN0A93bFaAdN6ANoCEdAq/Qx2bG3nnV9lChoBkdAmj7pBw++umgHTegDaAhHQKv1Pe4TbnJ1fZQoaAZHQJges+pwS8JoB03oA2gIR0Cr+pQco6S1dX2UKGgGR0CXwqrzoUzsaAdN6ANoCEdAq/83y7PIGXV9lChoBkdAl/0dwBHTZ2gHTegDaAhHQKwD9VVghKV1fZQoaAZHQJdz/h1klNVoB03oA2gIR0CsBXFGXokidX2UKGgGR0CZDL5i3G4raAdN6ANoCEdArArJQSBbwHV9lChoBkdAmQ9PMfRu0mgHTegDaAhHQKwN5/6O5rh1fZQoaAZHQJlIvAZbY9RoB03oA2gIR0CsEO+lbeMydX2UKGgGR0CYGF6qsEJTaAdN6ANoCEdArBHyEcsDn3V9lChoBkdAmbqqaoddV2gHTegDaAhHQKwXPL9uP3l1fZQoaAZHQJl14Py08eVoB03oA2gIR0CsGtuJDVpcdX2UKGgGR0CanvD/VAiWaAdN6ANoCEdArB9M/t6X0HVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b426128575acd1599baf129bd70e8ffff6ddac33a2b58b6951874a3b8d08a67
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e512d7f22364a6d6468cbcfc7fbd2e438e4628ed27c6790a55a578fbdf8c5d1
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a47ecf1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a47ecf280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a47ecf310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a47ecf3a0>", "_build": "<function ActorCriticPolicy._build at 0x7f9a47ecf430>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a47ecf4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9a47ecf550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a47ecf5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a47ecf670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a47ecf700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a47ecf790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a47ecf820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a47ec6e10>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676555894257746699, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAPn/FT/Axzu/crETvjMmiD8g/82/366mP7t1TL8rmfa+35SqvuROTT8qLTs/T9bCPVgbSz/ygSO/cHQmP41W2Tw2Bxg/Zfutv1qOlr+gnQ6+fvKVv5w3tD42G70/5tQdvaNBND8fqq8+w8QFPzZxg798ZdU+ckxDu8MkHD9vS4U/WvYLv3/MrT/+Qva+wMQyv/vKp76+sd8/0syHPyK0fz43jcM/yA/QPg4SJj+JpQA9wwjDPzCNJ79jP4m/A00Mv6t9KL9kpt8/APq8P1vx1ryjQTQ/H6qvPsPEBT82cYO/sq/SPhOjn749O74+K4zkPm5qn7+noUw/eyEmv5Xy574sMUa+8SeNP4G/Bj/JJCy7LfbSPnkTm771iCc/0+wJQL4USL8uQUi/Rn3HvDLfJT/VHyy/SuYAvl2kJT/PiSU/o0E0Px+qrz7DxAU/NnGDv4eZOL5k+JY+KU1BP5Ol37+fxIg/rV5FvxDbDz/hgBW/1KWsvxsIYMAF4AU95r4evEzjo78RVC/AOED+vgkuQb9/Egk/DwL9PkiJDUBB396+cUShvwEhrb+DwPu9/2BHvxbJtb+PiTrA1/X0v7tLeT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAADFAG1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApDrVvQAAAABOU/6/AAAAADO5cr0AAAAAcW71PwAAAAA5J4c9AAAAACdD8T8AAAAAFKAFPgAAAABuqfG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASvejtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKbOE70AAAAAGOXzvwAAAAANF3i9AAAAAKnO/D8AAAAA3EXfvQAAAACN/fg/AAAAAM6vlT0AAAAAzbrtvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGEhmLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDCNXA9AAAAABfzAMAAAAAAk7TNvQAAAABozfM/AAAAAHzyqb0AAAAABkHuPwAAAAC5FDK9AAAAAC90578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkoUy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAP2ubvQAAAAAbrfa/AAAAAOERYL0AAAAAH9zuPwAAAACFIh29AAAAAD6g4T8AAAAAgi3iPQAAAADnE9u/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJYz6aG5+YuMAWyUTegDjAF0lEdAqr3VihFmWnV9lChoBkdAkuYq6nR9gGgHTegDaAhHQKrDJuwX6691fZQoaAZHQJUOq9cry2BoB03oA2gIR0CqxkwL3K0VdX2UKGgGR0CQrifpD/lyaAdN6ANoCEdAqslpXdTHbXV9lChoBkdAlFreI/JNkGgHTegDaAhHQKrKgTJQtSR1fZQoaAZHQJPiS8dxQzloB03oA2gIR0Cq0ktYB/7SdX2UKGgGR0CS7bnYg7o0aAdN6ANoCEdAqtah+OOsDHV9lChoBkdAknp2LUCq62gHTegDaAhHQKrZqQiA2AJ1fZQoaAZHQJMfeDM/yG1oB03oA2gIR0Cq2qlX7tRfdX2UKGgGR0CS4asS00FbaAdN6ANoCEdAqt/0iQkonnV9lChoBkdAjnRAUL2HtWgHTegDaAhHQKrjDz+3pfR1fZQoaAZHQJEJq1iONo9oB03oA2gIR0Cq5h/s/pt8dX2UKGgGR0CSC0c/dIoWaAdN6ANoCEdAqucuuTzNEHV9lChoBkdAlJsnuRcNY2gHTegDaAhHQKruBhkRSP51fZQoaAZHQH4GMZP2wmpoB03oA2gIR0Cq8u/lIVdpdX2UKGgGR0CVdJycTakAaAdN6ANoCEdAqvZEAYHgP3V9lChoBkdAk+ZN0FKTS2gHTegDaAhHQKr3Tm9xp+N1fZQoaAZHQJR16iM5wOxoB03oA2gIR0Cq/KpNj9XLdX2UKGgGR0CWAsq9oN/faAdN6ANoCEdAqv/t+Zw4sHV9lChoBkdAlnSFtGd7OWgHTegDaAhHQKsC9mmtQsR1fZQoaAZHQJekZdrwe/5oB03oA2gIR0CrA//YjB2wdX2UKGgGR0CZqmO/tY0VaAdN6ANoCEdAqwoCj+Jgs3V9lChoBkdAmVd4zvZyuWgHTegDaAhHQKsOqLWI42l1fZQoaAZHQJkZlBiTdLxoB03oA2gIR0CrEuY/eLvUdX2UKGgGR0CZxqfZmI0qaAdN6ANoCEdAqxPscyWRinV9lChoBkdAmeFJnHvMKWgHTegDaAhHQKsZQEeQuEp1fZQoaAZHQJk/GmxdIG1oB03oA2gIR0CrHGsz/IbPdX2UKGgGR0CY4ELQokRjaAdN6ANoCEdAqx9xZ0Syt3V9lChoBkdAmOdkOVgQYmgHTegDaAhHQKsgcI+nqFB1fZQoaAZHQJgciUUwi7loB03oA2gIR0CrJcfy5I6KdX2UKGgGR0CY8MzAvcrRaAdN6ANoCEdAqyoW6Ae7tnV9lChoBkdAl0TxQrMC92gHTegDaAhHQKsuwneizs11fZQoaAZHQJhG+n1nM+xoB03oA2gIR0CrMGqlP8AJdX2UKGgGR0CYrVuZTho/aAdN6ANoCEdAqzXQKlYU4HV9lChoBkdAmR/3mJWNm2gHTegDaAhHQKs48idJ8OV1fZQoaAZHQJeiGBlMAWBoB03oA2gIR0CrO/q6OHWSdX2UKGgGR0CX9oJYkmhNaAdN6ANoCEdAqz0CsEJSi3V9lChoBkdAmPYkEPlMiGgHTegDaAhHQKtCXjwQUYd1fZQoaAZHQJmyOTpxFRZoB03oA2gIR0CrRkOWjXWfdX2UKGgGR0CZ1Q5vcafjaAdN6ANoCEdAq0rKGYa5w3V9lChoBkdAmSK/vSc9XGgHTegDaAhHQKtMbJcPe551fZQoaAZHQJdjK+Eh7mdoB03oA2gIR0CrUqLK/20zdX2UKGgGR0CUKJyWRigCaAdN6ANoCEdAq1XKqU/wAnV9lChoBkdAlsuws052hmgHTegDaAhHQKtY0nwXqJN1fZQoaAZHQJjUwrtmcvxoB03oA2gIR0CrWeIakyk9dX2UKGgGR0CV74SWZ7XyaAdN6ANoCEdAq19HUnXumnV9lChoBkdAmGuIwyqMnGgHTegDaAhHQKtianjQzDZ1fZQoaAZHQJWiPPLPldVoB03oA2gIR0CrZphK+SKWdX2UKGgGR0CXbUggHNX6aAdN6ANoCEdAq2grlcQiA3V9lChoBkdAlcf1RDTjN2gHTegDaAhHQKtvcBDohZB1fZQoaAZHQJhiz0h/y5JoB03oA2gIR0CrcozyJ9ApdX2UKGgGR0CYpgZNwiqyaAdN6ANoCEdAq3WVbu+h5HV9lChoBkdAmNUEQf6oEWgHTegDaAhHQKt2nf1pTMt1fZQoaAZHQJhbw8DB/I9oB03oA2gIR0Cre9akIomYdX2UKGgGR0CYMOzposZpaAdN6ANoCEdAq37dzIV/MHV9lChoBkdAmTa9C/oJRmgHTegDaAhHQKuCKW+oLoh1fZQoaAZHQJh+xQ9A5aNoB03oA2gIR0Crg6pLdvbXdX2UKGgGR0CWzLU4JeE7aAdN6ANoCEdAq4vIvzvqknV9lChoBkdAmXQ5TZQHiWgHTegDaAhHQKuPK/xlQMx1fZQoaAZHQJkFBPqLS/loB03oA2gIR0CrkjQDvE0jdX2UKGgGR0CY+M6qKgqWaAdN6ANoCEdAq5M7KJVKgHV9lChoBkdAmoupNfw7T2gHTegDaAhHQKuYdgZTAFh1fZQoaAZHQJr6iU6gdwNoB03oA2gIR0Crm5viDM/ydX2UKGgGR0CcIfhIvrWzaAdN6ANoCEdAq56Tu2JBPnV9lChoBkdAmvcD+rELpmgHTegDaAhHQKufoeIVM251fZQoaAZHQJhwZwVCXyBoB03oA2gIR0Crp8RdY4hmdX2UKGgGR0CZ1DCjUNKAaAdN6ANoCEdAq6ulNBWxQnV9lChoBkdAlqkXfuTibWgHTegDaAhHQKuup9XtBv91fZQoaAZHQJWFNqDbrTpoB03oA2gIR0Crr6xiobXIdX2UKGgGR0CXrRr1uivgaAdN6ANoCEdAq7T1lRP423V9lChoBkdAnDEBufmLcmgHTegDaAhHQKu4E5ksjFB1fZQoaAZHQJNa3lCCz1NoB03oA2gIR0Cruxu7YkE+dX2UKGgGR0CX6a9wFTvRaAdN6ANoCEdAq7wZD/lyR3V9lChoBkdAmiKd8zAN5WgHTegDaAhHQKvDAIToMa11fZQoaAZHQJbN5sMy8BdoB03oA2gIR0Crx/LgXMyKdX2UKGgGR0CXTHNYr8R+aAdN6ANoCEdAq8siU9pyqHV9lChoBkdAmUQFMmF8HGgHTegDaAhHQKvMI+xGDth1fZQoaAZHQJ110etCAtpoB03oA2gIR0Cr0YIiTt9hdX2UKGgGR0Cc0rOtW+49aAdN6ANoCEdAq9Snh0hePnV9lChoBkdAmbzTXvphW2gHTegDaAhHQKvXr6By0a91fZQoaAZHQJtAN9H+ZPVoB03oA2gIR0Cr2LKC6H0sdX2UKGgGR0CZ6cF3pwCKaAdN6ANoCEdAq96x99c8knV9lChoBkdAmJMHEVFhHGgHTegDaAhHQKvjcbDMvAZ1fZQoaAZHQJyurpSrHVBoB03oA2gIR0Cr54wZXMhYdX2UKGgGR0CcbgNUwSJ1aAdN6ANoCEdAq+iZm03OwHV9lChoBkdAmiO8i4axYGgHTegDaAhHQKvt+0cfeUJ1fZQoaAZHQJnNQw7DEWJoB03oA2gIR0Cr8SHp8neBdX2UKGgGR0CYhN0A93bFaAdN6ANoCEdAq/Qx2bG3nnV9lChoBkdAmj7pBw++umgHTegDaAhHQKv1Pe4TbnJ1fZQoaAZHQJges+pwS8JoB03oA2gIR0Cr+pQco6S1dX2UKGgGR0CXwqrzoUzsaAdN6ANoCEdAq/83y7PIGXV9lChoBkdAl/0dwBHTZ2gHTegDaAhHQKwD9VVghKV1fZQoaAZHQJdz/h1klNVoB03oA2gIR0CsBXFGXokidX2UKGgGR0CZDL5i3G4raAdN6ANoCEdArArJQSBbwHV9lChoBkdAmQ9PMfRu0mgHTegDaAhHQKwN5/6O5rh1fZQoaAZHQJlIvAZbY9RoB03oA2gIR0CsEO+lbeMydX2UKGgGR0CYGF6qsEJTaAdN6ANoCEdArBHyEcsDn3V9lChoBkdAmbqqaoddV2gHTegDaAhHQKwXPL9uP3l1fZQoaAZHQJl14Py08eVoB03oA2gIR0CsGtuJDVpcdX2UKGgGR0CanvD/VAiWaAdN6ANoCEdArB9M/t6X0HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:30a6dba213356b70af335d09f1f67a6670a9ea84ec30fe75fa8c265d1724e818
3
+ size 1115196
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1289.7544214675406, "std_reward": 171.94766259735786, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-16T15:01:33.660952"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9356d78ce8e9c0bec1de0dd53e022b0419dab171ff7d3ecae11320792fbe0262
3
+ size 2136