mrp commited on
Commit
5047565
1 Parent(s): a5f3108

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ license: apache-2.0
4
+ tags:
5
+ - sentence-transformers
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+ language:
10
+ - en
11
+ ---
12
+
13
+ # kornwtp/ConGen-BERT-Small
14
+
15
+ This is a [SCT](https://github.com/mrpeerat/SCT) model: It maps sentences to a dense vector space and can be used for tasks like semantic search.
16
+
17
+
18
+
19
+ ## Usage
20
+
21
+ Using this model becomes easy when you have [SCT](https://github.com/mrpeerat/SCT) installed:
22
+
23
+ ```
24
+ pip install -U git+https://github.com/mrpeerat/SCT
25
+ ```
26
+
27
+ Then you can use the model like this:
28
+
29
+ ```python
30
+ from sentence_transformers import SentenceTransformer
31
+ sentences = ["This is an example sentence", "Each sentence is converted"]
32
+
33
+ model = SentenceTransformer('mrp/SCT_BERT_Large')
34
+ embeddings = model.encode(sentences)
35
+ print(embeddings)
36
+ ```
37
+
38
+
39
+
40
+ ## Evaluation Results
41
+
42
+
43
+
44
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [Semantic Textual Similarity](https://github.com/mrpeerat/SCT#main-results---sts)
45
+
46
+
47
+ ## Citing & Authors
48
+
49
+ ```bibtex
50
+ @article{limkonchotiwat-etal-2023-sct,
51
+ title = "An Efficient Self-Supervised Cross-View Training For Sentence Embedding",
52
+ author = "Limkonchotiwat, Peerat and
53
+ Ponwitayarat, Wuttikorn and
54
+ Lowphansirikul, Lalita and
55
+ Udomcharoenchaikit, Can and
56
+ Chuangsuwanich, Ekapol and
57
+ Nutanong, Sarana",
58
+ journal = "Transactions of the Association for Computational Linguistics",
59
+ year = "2023",
60
+ address = "Cambridge, MA",
61
+ publisher = "MIT Press",
62
+ }
63
+ ```