mrm8488 commited on
Commit
8b2bc20
·
1 Parent(s): dba36a2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -18
README.md CHANGED
@@ -21,7 +21,7 @@ model-index:
21
  metrics:
22
  - name: Test WER
23
  type: wer
24
- value: 51.18
25
  ---
26
 
27
  # Wav2Vec2-Large-XLSR-53-ukrainian
@@ -38,7 +38,7 @@ import torchaudio
38
  from datasets import load_dataset
39
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
40
 
41
- test_dataset = load_dataset("common_voice", "es, split="test[:2%]").
42
 
43
  processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-ukrainian")
44
  model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-ukrainian")
@@ -48,15 +48,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
48
  # Preprocessing the datasets.
49
  # We need to read the aduio files as arrays
50
  def speech_file_to_array_fn(batch):
51
- \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
52
- \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
53
- \\\\\\\\\\\\\\\\treturn batch
54
 
55
  test_dataset = test_dataset.map(speech_file_to_array_fn)
56
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
57
 
58
  with torch.no_grad():
59
- \\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
60
 
61
  predicted_ids = torch.argmax(logits, dim=-1)
62
 
@@ -84,37 +84,36 @@ processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-uk
84
  model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-ukrainian")
85
  model.to("cuda")
86
 
87
- chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]'
88
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
89
 
90
  # Preprocessing the datasets.
91
  # We need to read the aduio files as arrays
92
  def speech_file_to_array_fn(batch):
93
- \\\\\\\\\\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
94
- \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
95
- \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
96
- \\\\\\\\\\\\\\\\treturn batch
97
 
98
  test_dataset = test_dataset.map(speech_file_to_array_fn)
99
 
100
  # Preprocessing the datasets.
101
  # We need to read the aduio files as arrays
102
  def evaluate(batch):
103
- \\\\\\\\\\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
104
-
105
- \\\\\\\\\\\\\\\\twith torch.no_grad():
106
- \\\\\\\\\\\\\\\\t\\\\\\\\\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
107
 
108
  pred_ids = torch.argmax(logits, dim=-1)
109
- \\\\\\\\\\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
110
- \\\\\\\\\\\\\\\\treturn batch
111
 
112
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
113
 
114
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
115
  ```
116
 
117
- **Test Result**: 51.18 %
118
 
119
 
120
  ## Training
 
21
  metrics:
22
  - name: Test WER
23
  type: wer
24
+ value: 41.82
25
  ---
26
 
27
  # Wav2Vec2-Large-XLSR-53-ukrainian
 
38
  from datasets import load_dataset
39
  from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
40
 
41
+ test_dataset = load_dataset("common_voice", "uk", split="test[:2%]").
42
 
43
  processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-ukrainian")
44
  model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-ukrainian")
 
48
  # Preprocessing the datasets.
49
  # We need to read the aduio files as arrays
50
  def speech_file_to_array_fn(batch):
51
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
52
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
53
+ return batch
54
 
55
  test_dataset = test_dataset.map(speech_file_to_array_fn)
56
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
57
 
58
  with torch.no_grad():
59
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
60
 
61
  predicted_ids = torch.argmax(logits, dim=-1)
62
 
 
84
  model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-ukrainian")
85
  model.to("cuda")
86
 
87
+ chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“]'
88
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
89
 
90
  # Preprocessing the datasets.
91
  # We need to read the aduio files as arrays
92
  def speech_file_to_array_fn(batch):
93
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
94
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
95
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
96
+ return batch
97
 
98
  test_dataset = test_dataset.map(speech_file_to_array_fn)
99
 
100
  # Preprocessing the datasets.
101
  # We need to read the aduio files as arrays
102
  def evaluate(batch):
103
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
104
+ with torch.no_grad():
105
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
 
106
 
107
  pred_ids = torch.argmax(logits, dim=-1)
108
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
109
+ return batch
110
 
111
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
112
 
113
  print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
114
  ```
115
 
116
+ **Test Result**: 41.82 %
117
 
118
 
119
  ## Training