Update README.md
Browse files
README.md
CHANGED
@@ -33,92 +33,125 @@ When using this model, make sure that your speech input is sampled at 16kHz.
|
|
33 |
The model can be used directly (without a language model) as follows:
|
34 |
|
35 |
```python
|
|
|
36 |
import torch
|
|
|
37 |
import torchaudio
|
|
|
38 |
from datasets import load_dataset
|
|
|
39 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
40 |
|
41 |
-
test_dataset = load_dataset("common_voice", "es, split="test[:2%]").
|
42 |
|
43 |
processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
|
|
|
44 |
model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
|
45 |
|
46 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
47 |
|
48 |
# Preprocessing the datasets.
|
|
|
49 |
# We need to read the aduio files as arrays
|
|
|
50 |
def speech_file_to_array_fn(batch):
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
|
55 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
|
56 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
57 |
|
58 |
with torch.no_grad():
|
59 |
-
|
|
|
60 |
|
61 |
predicted_ids = torch.argmax(logits, dim=-1)
|
62 |
|
63 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
|
|
64 |
print("Reference:", test_dataset["sentence"][:2])
|
65 |
-
```
|
66 |
|
|
|
67 |
|
68 |
## Evaluation
|
69 |
|
70 |
-
The model can be evaluated as follows on the
|
71 |
-
|
72 |
|
73 |
```python
|
|
|
74 |
import torch
|
|
|
75 |
import torchaudio
|
|
|
76 |
from datasets import load_dataset, load_metric
|
|
|
77 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
78 |
import re
|
79 |
|
80 |
test_dataset = load_dataset("common_voice", "es", split="test")
|
|
|
81 |
wer = load_metric("wer")
|
82 |
|
83 |
processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
|
|
|
84 |
model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
|
|
|
85 |
model.to("cuda")
|
86 |
|
87 |
-
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"
|
|
|
88 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
89 |
|
90 |
# Preprocessing the datasets.
|
|
|
91 |
# We need to read the aduio files as arrays
|
|
|
92 |
def speech_file_to_array_fn(batch):
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
97 |
|
98 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
99 |
|
100 |
# Preprocessing the datasets.
|
|
|
101 |
# We need to read the aduio files as arrays
|
|
|
102 |
def evaluate(batch):
|
103 |
-
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
104 |
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
111 |
|
112 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
113 |
|
114 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
115 |
-
```
|
116 |
|
117 |
-
|
118 |
|
|
|
119 |
|
120 |
## Training
|
121 |
|
122 |
The Common Voice `train`, `validation` datasets were used for training.
|
123 |
|
124 |
-
The script used for training can be found ???
|
|
|
33 |
The model can be used directly (without a language model) as follows:
|
34 |
|
35 |
```python
|
36 |
+
|
37 |
import torch
|
38 |
+
|
39 |
import torchaudio
|
40 |
+
|
41 |
from datasets import load_dataset
|
42 |
+
|
43 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
44 |
|
45 |
+
test_dataset = load_dataset("common_voice", "es", split="test[:2%]").
|
46 |
|
47 |
processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
|
48 |
+
|
49 |
model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
|
50 |
|
51 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
52 |
|
53 |
# Preprocessing the datasets.
|
54 |
+
|
55 |
# We need to read the aduio files as arrays
|
56 |
+
|
57 |
def speech_file_to_array_fn(batch):
|
58 |
+
|
59 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
60 |
+
|
61 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
62 |
+
|
63 |
+
return batch
|
64 |
|
65 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
66 |
+
|
67 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
68 |
|
69 |
with torch.no_grad():
|
70 |
+
|
71 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
72 |
|
73 |
predicted_ids = torch.argmax(logits, dim=-1)
|
74 |
|
75 |
print("Prediction:", processor.batch_decode(predicted_ids))
|
76 |
+
|
77 |
print("Reference:", test_dataset["sentence"][:2])
|
|
|
78 |
|
79 |
+
```
|
80 |
|
81 |
## Evaluation
|
82 |
|
83 |
+
The model can be evaluated as follows on the Ukrainian test data of Common Voice.
|
|
|
84 |
|
85 |
```python
|
86 |
+
|
87 |
import torch
|
88 |
+
|
89 |
import torchaudio
|
90 |
+
|
91 |
from datasets import load_dataset, load_metric
|
92 |
+
|
93 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
94 |
+
|
95 |
import re
|
96 |
|
97 |
test_dataset = load_dataset("common_voice", "es", split="test")
|
98 |
+
|
99 |
wer = load_metric("wer")
|
100 |
|
101 |
processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
|
102 |
+
|
103 |
model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-spanish")
|
104 |
+
|
105 |
model.to("cuda")
|
106 |
|
107 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
|
108 |
+
|
109 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
110 |
|
111 |
# Preprocessing the datasets.
|
112 |
+
|
113 |
# We need to read the aduio files as arrays
|
114 |
+
|
115 |
def speech_file_to_array_fn(batch):
|
116 |
+
|
117 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
118 |
+
|
119 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
120 |
+
|
121 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
122 |
+
|
123 |
+
return batch
|
124 |
|
125 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
126 |
|
127 |
# Preprocessing the datasets.
|
128 |
+
|
129 |
# We need to read the aduio files as arrays
|
130 |
+
|
131 |
def evaluate(batch):
|
|
|
132 |
|
133 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
134 |
+
|
135 |
+
with torch.no_grad():
|
136 |
+
|
137 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
138 |
|
139 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
140 |
+
|
141 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
142 |
+
|
143 |
+
return batch
|
144 |
|
145 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
146 |
|
147 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
|
|
148 |
|
149 |
+
```
|
150 |
|
151 |
+
**Test Result**: %
|
152 |
|
153 |
## Training
|
154 |
|
155 |
The Common Voice `train`, `validation` datasets were used for training.
|
156 |
|
157 |
+
The script used for training can be found ???
|