julien-c HF staff commited on
Commit
a0f93af
1 Parent(s): 1c73be9

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/mrm8488/squeezebert-finetuned-squadv1/README.md

Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - squad
5
+ ---
6
+
7
+ # SqueezeBERT + SQuAD (v1.1)
8
+
9
+ [squeezebert-uncased](https://huggingface.co/squeezebert/squeezebert-uncased) fine-tuned on [SQUAD v1.1](https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/) for **Q&A** downstream task.
10
+
11
+ ## Details of SqueezeBERT
12
+
13
+ This model, `squeezebert-uncased`, is a pretrained model for the English language using a masked language modeling (MLM) and Sentence Order Prediction (SOP) objective.
14
+ SqueezeBERT was introduced in [this paper](https://arxiv.org/abs/2006.11316). This model is case-insensitive. The model architecture is similar to BERT-base, but with the pointwise fully-connected layers replaced with [grouped convolutions](https://blog.yani.io/filter-group-tutorial/).
15
+ The authors found that SqueezeBERT is 4.3x faster than `bert-base-uncased` on a Google Pixel 3 smartphone.
16
+ More about the model [here](https://arxiv.org/abs/2004.02984)
17
+
18
+ ## Details of the downstream task (Q&A) - Dataset 📚 🧐 ❓
19
+
20
+ **S**tanford **Q**uestion **A**nswering **D**ataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
21
+ SQuAD v1.1 contains **100,000+** question-answer pairs on **500+** articles.
22
+
23
+ ## Model training 🏋️‍
24
+
25
+ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command:
26
+
27
+ ```bash
28
+ python /content/transformers/examples/question-answering/run_squad.py \
29
+ --model_type bert \
30
+ --model_name_or_path squeezebert/squeezebert-uncased \
31
+ --do_eval \
32
+ --do_train \
33
+ --do_lower_case \
34
+ --train_file /content/dataset/train-v1.1.json \
35
+ --predict_file /content/dataset/dev-v1.1.json \
36
+ --per_gpu_train_batch_size 16 \
37
+ --learning_rate 3e-5 \
38
+ --num_train_epochs 15 \
39
+ --max_seq_length 384 \
40
+ --doc_stride 128 \
41
+ --output_dir /content/output_dir \
42
+ --overwrite_output_dir \
43
+ --save_steps 2000
44
+ ```
45
+
46
+ ## Test set Results 🧾
47
+
48
+ | Metric | # Value |
49
+ | ------ | --------- |
50
+ | **EM** | **76.66** |
51
+ | **F1** | **85.83** |
52
+
53
+ Model Size: **195 MB**
54
+
55
+ ### Model in action 🚀
56
+
57
+ Fast usage with **pipelines**:
58
+
59
+ ```python
60
+ from transformers import pipeline
61
+ QnA_pipeline = pipeline('question-answering', model='mrm8488/squeezebert-finetuned-squadv1')
62
+ QnA_pipeline({
63
+ 'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.',
64
+ 'question': 'Who did identified it ?'
65
+ })
66
+
67
+ # Output: {'answer': 'scientists.', 'end': 106, 'score': 0.6988425850868225, 'start': 96}
68
+ ```
69
+
70
+ > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/)
71
+
72
+ > Made with <span style="color: #e25555;">&hearts;</span> in Spain