julien-c HF staff commited on
Commit
4611efe
1 Parent(s): cbfb41b

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/mrm8488/mobilebert-uncased-finetuned-squadv1/README.md

Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - squad
5
+ ---
6
+
7
+ # MobileBERT + SQuAD (v1.1) 📱❓
8
+
9
+ [mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) fine-tuned on [SQUAD v2.0 dataset](https://rajpurkar.github.io/SQuAD-explorer/explore/v2.0/dev/) for **Q&A** downstream task.
10
+
11
+ ## Details of the downstream task (Q&A) - Model 🧠
12
+
13
+ **MobileBERT** is a thin version of *BERT_LARGE*, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks.
14
+
15
+ The checkpoint used here is the original MobileBert Optimized Uncased English: (uncased_L-24_H-128_B-512_A-4_F-4_OPT) checkpoint.
16
+
17
+ More about the model [here](https://arxiv.org/abs/2004.02984)
18
+
19
+ ## Details of the downstream task (Q&A) - Dataset 📚
20
+
21
+ **S**tanford **Q**uestion **A**nswering **D**ataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.
22
+ SQuAD v1.1 contains **100,000+** question-answer pairs on **500+** articles.
23
+
24
+ ## Model training 🏋️‍
25
+
26
+ The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command:
27
+
28
+ ```bash
29
+ python transformers/examples/question-answering/run_squad.py \
30
+ --model_type bert \
31
+ --model_name_or_path 'google/mobilebert-uncased' \
32
+ --do_eval \
33
+ --do_train \
34
+ --do_lower_case \
35
+ --train_file '/content/dataset/train-v1.1.json' \
36
+ --predict_file '/content/dataset/dev-v1.1.json' \
37
+ --per_gpu_train_batch_size 16 \
38
+ --learning_rate 3e-5 \
39
+ --num_train_epochs 5 \
40
+ --max_seq_length 384 \
41
+ --doc_stride 128 \
42
+ --output_dir '/content/output' \
43
+ --overwrite_output_dir \
44
+ --save_steps 1000
45
+ ```
46
+
47
+ It is important to say that this models converges much faster than other ones. So, it is also cheap to fine-tune.
48
+
49
+ ## Test set Results 🧾
50
+
51
+ | Metric | # Value |
52
+ | ------ | --------- |
53
+ | **EM** | **82.33** |
54
+ | **F1** | **89.64** |
55
+ | **Size**| **94 MB** |
56
+
57
+ ### Model in action 🚀
58
+
59
+ Fast usage with **pipelines**:
60
+
61
+ ```python
62
+ from transformers import pipeline
63
+ QnA_pipeline = pipeline('question-answering', model='mrm8488/mobilebert-uncased-finetuned-squadv1')
64
+ QnA_pipeline({
65
+ 'context': 'A new strain of flu that has the potential to become a pandemic has been identified in China by scientists.',
66
+ 'question': 'Who did identified it ?'
67
+ })
68
+
69
+ # Output: {'answer': 'scientists.', 'end': 106, 'score': 0.7885545492172241, 'start': 96}
70
+ ```
71
+
72
+ > Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488) | [LinkedIn](https://www.linkedin.com/in/manuel-romero-cs/)
73
+
74
+ > Made with <span style="color: #e25555;">&hearts;</span> in Spain