mrm8488 commited on
Commit
ac88224
1 Parent(s): 0e8e461

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - gsm8k
7
+ model-index:
8
+ - name: flan-t5-large-finetuned-gsm8k
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # flan-t5-large-finetuned-gsm8k
16
+
17
+ This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the gsm8k dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3091
20
+ - Rouge2 Precision: 0.4454
21
+ - Rouge2 Recall: 0.0953
22
+ - Rouge2 Fmeasure: 0.152
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 5e-05
42
+ - train_batch_size: 2
43
+ - eval_batch_size: 4
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 4
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
52
+ |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:|
53
+ | 0.34 | 1.0 | 3737 | 0.3206 | 0.4241 | 0.089 | 0.1423 |
54
+ | 0.2786 | 2.0 | 7474 | 0.3089 | 0.4334 | 0.0916 | 0.1463 |
55
+ | 0.247 | 3.0 | 11211 | 0.3074 | 0.4461 | 0.095 | 0.1515 |
56
+ | 0.2283 | 4.0 | 14948 | 0.3091 | 0.4454 | 0.0953 | 0.152 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.24.0
62
+ - Pytorch 1.12.1+cu113
63
+ - Datasets 2.6.1
64
+ - Tokenizers 0.13.2