Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +865 -0
- config.json +27 -0
- config_sentence_transformers.json +10 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.json +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,865 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- dataset_size:100K<n<1M
|
10 |
+
- loss:MatryoshkaLoss
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
base_model: distilbert/distilroberta-base
|
13 |
+
metrics:
|
14 |
+
- pearson_cosine
|
15 |
+
- spearman_cosine
|
16 |
+
- pearson_manhattan
|
17 |
+
- spearman_manhattan
|
18 |
+
- pearson_euclidean
|
19 |
+
- spearman_euclidean
|
20 |
+
- pearson_dot
|
21 |
+
- spearman_dot
|
22 |
+
- pearson_max
|
23 |
+
- spearman_max
|
24 |
+
widget:
|
25 |
+
- source_sentence: Test Rocks
|
26 |
+
sentences:
|
27 |
+
- Number of testimonies
|
28 |
+
- People are at a pool.
|
29 |
+
- I've never been to Asia
|
30 |
+
- source_sentence: No animals.
|
31 |
+
sentences:
|
32 |
+
- We don't have a dog.
|
33 |
+
- These boys are on bikes
|
34 |
+
- A person is climbing.
|
35 |
+
- source_sentence: Shrinking.
|
36 |
+
sentences:
|
37 |
+
- That doesn't seem fair.
|
38 |
+
- A man reads the paper.
|
39 |
+
- I've never been to Asia
|
40 |
+
- source_sentence: Loire Valley
|
41 |
+
sentences:
|
42 |
+
- A Lake in Loire.
|
43 |
+
- people stand near pole
|
44 |
+
- A cat is licking itself.
|
45 |
+
- source_sentence: It is well.
|
46 |
+
sentences:
|
47 |
+
- That's convenient.
|
48 |
+
- away from the children
|
49 |
+
- She hated the restaurant!
|
50 |
+
pipeline_tag: sentence-similarity
|
51 |
+
model-index:
|
52 |
+
- name: SentenceTransformer based on distilbert/distilroberta-base
|
53 |
+
results:
|
54 |
+
- task:
|
55 |
+
type: semantic-similarity
|
56 |
+
name: Semantic Similarity
|
57 |
+
dataset:
|
58 |
+
name: sts dev 768
|
59 |
+
type: sts-dev-768
|
60 |
+
metrics:
|
61 |
+
- type: pearson_cosine
|
62 |
+
value: 0.8413274730706258
|
63 |
+
name: Pearson Cosine
|
64 |
+
- type: spearman_cosine
|
65 |
+
value: 0.8478057476815382
|
66 |
+
name: Spearman Cosine
|
67 |
+
- type: pearson_manhattan
|
68 |
+
value: 0.8414182910991368
|
69 |
+
name: Pearson Manhattan
|
70 |
+
- type: spearman_manhattan
|
71 |
+
value: 0.8394684211369814
|
72 |
+
name: Spearman Manhattan
|
73 |
+
- type: pearson_euclidean
|
74 |
+
value: 0.8423380151813549
|
75 |
+
name: Pearson Euclidean
|
76 |
+
- type: spearman_euclidean
|
77 |
+
value: 0.8401129676358965
|
78 |
+
name: Spearman Euclidean
|
79 |
+
- type: pearson_dot
|
80 |
+
value: 0.7854982058734802
|
81 |
+
name: Pearson Dot
|
82 |
+
- type: spearman_dot
|
83 |
+
value: 0.7814388303641997
|
84 |
+
name: Spearman Dot
|
85 |
+
- type: pearson_max
|
86 |
+
value: 0.8423380151813549
|
87 |
+
name: Pearson Max
|
88 |
+
- type: spearman_max
|
89 |
+
value: 0.8478057476815382
|
90 |
+
name: Spearman Max
|
91 |
+
- task:
|
92 |
+
type: semantic-similarity
|
93 |
+
name: Semantic Similarity
|
94 |
+
dataset:
|
95 |
+
name: sts dev 512
|
96 |
+
type: sts-dev-512
|
97 |
+
metrics:
|
98 |
+
- type: pearson_cosine
|
99 |
+
value: 0.8394744649386727
|
100 |
+
name: Pearson Cosine
|
101 |
+
- type: spearman_cosine
|
102 |
+
value: 0.8469596264857904
|
103 |
+
name: Spearman Cosine
|
104 |
+
- type: pearson_manhattan
|
105 |
+
value: 0.8398552366754626
|
106 |
+
name: Pearson Manhattan
|
107 |
+
- type: spearman_manhattan
|
108 |
+
value: 0.8377241640608183
|
109 |
+
name: Spearman Manhattan
|
110 |
+
- type: pearson_euclidean
|
111 |
+
value: 0.8406514989809173
|
112 |
+
name: Pearson Euclidean
|
113 |
+
- type: spearman_euclidean
|
114 |
+
value: 0.8380050330376462
|
115 |
+
name: Spearman Euclidean
|
116 |
+
- type: pearson_dot
|
117 |
+
value: 0.7811135781647157
|
118 |
+
name: Pearson Dot
|
119 |
+
- type: spearman_dot
|
120 |
+
value: 0.7776714775017128
|
121 |
+
name: Spearman Dot
|
122 |
+
- type: pearson_max
|
123 |
+
value: 0.8406514989809173
|
124 |
+
name: Pearson Max
|
125 |
+
- type: spearman_max
|
126 |
+
value: 0.8469596264857904
|
127 |
+
name: Spearman Max
|
128 |
+
- task:
|
129 |
+
type: semantic-similarity
|
130 |
+
name: Semantic Similarity
|
131 |
+
dataset:
|
132 |
+
name: sts dev 256
|
133 |
+
type: sts-dev-256
|
134 |
+
metrics:
|
135 |
+
- type: pearson_cosine
|
136 |
+
value: 0.8326846589795867
|
137 |
+
name: Pearson Cosine
|
138 |
+
- type: spearman_cosine
|
139 |
+
value: 0.8435757360139872
|
140 |
+
name: Spearman Cosine
|
141 |
+
- type: pearson_manhattan
|
142 |
+
value: 0.835121668379584
|
143 |
+
name: Pearson Manhattan
|
144 |
+
- type: spearman_manhattan
|
145 |
+
value: 0.833167770567356
|
146 |
+
name: Spearman Manhattan
|
147 |
+
- type: pearson_euclidean
|
148 |
+
value: 0.8359785864160201
|
149 |
+
name: Pearson Euclidean
|
150 |
+
- type: spearman_euclidean
|
151 |
+
value: 0.8337674519096212
|
152 |
+
name: Spearman Euclidean
|
153 |
+
- type: pearson_dot
|
154 |
+
value: 0.7499541215721716
|
155 |
+
name: Pearson Dot
|
156 |
+
- type: spearman_dot
|
157 |
+
value: 0.7452815230357489
|
158 |
+
name: Spearman Dot
|
159 |
+
- type: pearson_max
|
160 |
+
value: 0.8359785864160201
|
161 |
+
name: Pearson Max
|
162 |
+
- type: spearman_max
|
163 |
+
value: 0.8435757360139872
|
164 |
+
name: Spearman Max
|
165 |
+
- task:
|
166 |
+
type: semantic-similarity
|
167 |
+
name: Semantic Similarity
|
168 |
+
dataset:
|
169 |
+
name: sts dev 128
|
170 |
+
type: sts-dev-128
|
171 |
+
metrics:
|
172 |
+
- type: pearson_cosine
|
173 |
+
value: 0.8243384464323462
|
174 |
+
name: Pearson Cosine
|
175 |
+
- type: spearman_cosine
|
176 |
+
value: 0.8399706247679909
|
177 |
+
name: Spearman Cosine
|
178 |
+
- type: pearson_manhattan
|
179 |
+
value: 0.8281897604718583
|
180 |
+
name: Pearson Manhattan
|
181 |
+
- type: spearman_manhattan
|
182 |
+
value: 0.8270317815639731
|
183 |
+
name: Spearman Manhattan
|
184 |
+
- type: pearson_euclidean
|
185 |
+
value: 0.8281918243965822
|
186 |
+
name: Pearson Euclidean
|
187 |
+
- type: spearman_euclidean
|
188 |
+
value: 0.8267242273030063
|
189 |
+
name: Spearman Euclidean
|
190 |
+
- type: pearson_dot
|
191 |
+
value: 0.7110017325551932
|
192 |
+
name: Pearson Dot
|
193 |
+
- type: spearman_dot
|
194 |
+
value: 0.7049602384186016
|
195 |
+
name: Spearman Dot
|
196 |
+
- type: pearson_max
|
197 |
+
value: 0.8281918243965822
|
198 |
+
name: Pearson Max
|
199 |
+
- type: spearman_max
|
200 |
+
value: 0.8399706247679909
|
201 |
+
name: Spearman Max
|
202 |
+
- task:
|
203 |
+
type: semantic-similarity
|
204 |
+
name: Semantic Similarity
|
205 |
+
dataset:
|
206 |
+
name: sts dev 64
|
207 |
+
type: sts-dev-64
|
208 |
+
metrics:
|
209 |
+
- type: pearson_cosine
|
210 |
+
value: 0.811599959622093
|
211 |
+
name: Pearson Cosine
|
212 |
+
- type: spearman_cosine
|
213 |
+
value: 0.8316629408285197
|
214 |
+
name: Spearman Cosine
|
215 |
+
- type: pearson_manhattan
|
216 |
+
value: 0.8113103800424869
|
217 |
+
name: Pearson Manhattan
|
218 |
+
- type: spearman_manhattan
|
219 |
+
value: 0.8104916438729426
|
220 |
+
name: Spearman Manhattan
|
221 |
+
- type: pearson_euclidean
|
222 |
+
value: 0.8113924334973999
|
223 |
+
name: Pearson Euclidean
|
224 |
+
- type: spearman_euclidean
|
225 |
+
value: 0.8110877753624469
|
226 |
+
name: Spearman Euclidean
|
227 |
+
- type: pearson_dot
|
228 |
+
value: 0.641225674602723
|
229 |
+
name: Pearson Dot
|
230 |
+
- type: spearman_dot
|
231 |
+
value: 0.6346995881423587
|
232 |
+
name: Spearman Dot
|
233 |
+
- type: pearson_max
|
234 |
+
value: 0.811599959622093
|
235 |
+
name: Pearson Max
|
236 |
+
- type: spearman_max
|
237 |
+
value: 0.8316629408285197
|
238 |
+
name: Spearman Max
|
239 |
+
- task:
|
240 |
+
type: semantic-similarity
|
241 |
+
name: Semantic Similarity
|
242 |
+
dataset:
|
243 |
+
name: sts dev 32
|
244 |
+
type: sts-dev-32
|
245 |
+
metrics:
|
246 |
+
- type: pearson_cosine
|
247 |
+
value: 0.7834130163353433
|
248 |
+
name: Pearson Cosine
|
249 |
+
- type: spearman_cosine
|
250 |
+
value: 0.814057381112976
|
251 |
+
name: Spearman Cosine
|
252 |
+
- type: pearson_manhattan
|
253 |
+
value: 0.7831854350286095
|
254 |
+
name: Pearson Manhattan
|
255 |
+
- type: spearman_manhattan
|
256 |
+
value: 0.7859760066096324
|
257 |
+
name: Spearman Manhattan
|
258 |
+
- type: pearson_euclidean
|
259 |
+
value: 0.7868628503474937
|
260 |
+
name: Pearson Euclidean
|
261 |
+
- type: spearman_euclidean
|
262 |
+
value: 0.7893614397994021
|
263 |
+
name: Spearman Euclidean
|
264 |
+
- type: pearson_dot
|
265 |
+
value: 0.5533705216922039
|
266 |
+
name: Pearson Dot
|
267 |
+
- type: spearman_dot
|
268 |
+
value: 0.5449230360083127
|
269 |
+
name: Spearman Dot
|
270 |
+
- type: pearson_max
|
271 |
+
value: 0.7868628503474937
|
272 |
+
name: Pearson Max
|
273 |
+
- type: spearman_max
|
274 |
+
value: 0.814057381112976
|
275 |
+
name: Spearman Max
|
276 |
+
- task:
|
277 |
+
type: semantic-similarity
|
278 |
+
name: Semantic Similarity
|
279 |
+
dataset:
|
280 |
+
name: sts dev 16
|
281 |
+
type: sts-dev-16
|
282 |
+
metrics:
|
283 |
+
- type: pearson_cosine
|
284 |
+
value: 0.7259201534121641
|
285 |
+
name: Pearson Cosine
|
286 |
+
- type: spearman_cosine
|
287 |
+
value: 0.7751337117844075
|
288 |
+
name: Spearman Cosine
|
289 |
+
- type: pearson_manhattan
|
290 |
+
value: 0.7420762055565752
|
291 |
+
name: Pearson Manhattan
|
292 |
+
- type: spearman_manhattan
|
293 |
+
value: 0.7552849049126117
|
294 |
+
name: Spearman Manhattan
|
295 |
+
- type: pearson_euclidean
|
296 |
+
value: 0.7483211915991654
|
297 |
+
name: Pearson Euclidean
|
298 |
+
- type: spearman_euclidean
|
299 |
+
value: 0.759888035465032
|
300 |
+
name: Spearman Euclidean
|
301 |
+
- type: pearson_dot
|
302 |
+
value: 0.4387404126202509
|
303 |
+
name: Pearson Dot
|
304 |
+
- type: spearman_dot
|
305 |
+
value: 0.42591442860202633
|
306 |
+
name: Spearman Dot
|
307 |
+
- type: pearson_max
|
308 |
+
value: 0.7483211915991654
|
309 |
+
name: Pearson Max
|
310 |
+
- type: spearman_max
|
311 |
+
value: 0.7751337117844075
|
312 |
+
name: Spearman Max
|
313 |
+
---
|
314 |
+
|
315 |
+
# SentenceTransformer based on distilbert/distilroberta-base
|
316 |
+
|
317 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
318 |
+
|
319 |
+
## Model Details
|
320 |
+
|
321 |
+
### Model Description
|
322 |
+
- **Model Type:** Sentence Transformer
|
323 |
+
- **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
|
324 |
+
- **Maximum Sequence Length:** 512 tokens
|
325 |
+
- **Output Dimensionality:** 768 tokens
|
326 |
+
- **Similarity Function:** Cosine Similarity
|
327 |
+
- **Training Dataset:**
|
328 |
+
- [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
329 |
+
- **Language:** en
|
330 |
+
<!-- - **License:** Unknown -->
|
331 |
+
|
332 |
+
### Model Sources
|
333 |
+
|
334 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
335 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
336 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
337 |
+
|
338 |
+
### Full Model Architecture
|
339 |
+
|
340 |
+
```
|
341 |
+
SentenceTransformer(
|
342 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
|
343 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
344 |
+
)
|
345 |
+
```
|
346 |
+
|
347 |
+
## Usage
|
348 |
+
|
349 |
+
### Direct Usage (Sentence Transformers)
|
350 |
+
|
351 |
+
First install the Sentence Transformers library:
|
352 |
+
|
353 |
+
```bash
|
354 |
+
pip install -U sentence-transformers
|
355 |
+
```
|
356 |
+
|
357 |
+
Then you can load this model and run inference.
|
358 |
+
```python
|
359 |
+
from sentence_transformers import SentenceTransformer
|
360 |
+
|
361 |
+
# Download from the 🤗 Hub
|
362 |
+
model = SentenceTransformer("mrm8488/distilroberta-base-ft-allnli-matryoshka-768-16-1e-128bs")
|
363 |
+
# Run inference
|
364 |
+
sentences = [
|
365 |
+
'It is well.',
|
366 |
+
"That's convenient.",
|
367 |
+
'away from the children',
|
368 |
+
]
|
369 |
+
embeddings = model.encode(sentences)
|
370 |
+
print(embeddings.shape)
|
371 |
+
# [3, 768]
|
372 |
+
|
373 |
+
# Get the similarity scores for the embeddings
|
374 |
+
similarities = model.similarity(embeddings, embeddings)
|
375 |
+
print(similarities.shape)
|
376 |
+
# [3, 3]
|
377 |
+
```
|
378 |
+
|
379 |
+
<!--
|
380 |
+
### Direct Usage (Transformers)
|
381 |
+
|
382 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
383 |
+
|
384 |
+
</details>
|
385 |
+
-->
|
386 |
+
|
387 |
+
<!--
|
388 |
+
### Downstream Usage (Sentence Transformers)
|
389 |
+
|
390 |
+
You can finetune this model on your own dataset.
|
391 |
+
|
392 |
+
<details><summary>Click to expand</summary>
|
393 |
+
|
394 |
+
</details>
|
395 |
+
-->
|
396 |
+
|
397 |
+
<!--
|
398 |
+
### Out-of-Scope Use
|
399 |
+
|
400 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
401 |
+
-->
|
402 |
+
|
403 |
+
## Evaluation
|
404 |
+
|
405 |
+
### Metrics
|
406 |
+
|
407 |
+
#### Semantic Similarity
|
408 |
+
* Dataset: `sts-dev-768`
|
409 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
410 |
+
|
411 |
+
| Metric | Value |
|
412 |
+
|:--------------------|:-----------|
|
413 |
+
| pearson_cosine | 0.8413 |
|
414 |
+
| **spearman_cosine** | **0.8478** |
|
415 |
+
| pearson_manhattan | 0.8414 |
|
416 |
+
| spearman_manhattan | 0.8395 |
|
417 |
+
| pearson_euclidean | 0.8423 |
|
418 |
+
| spearman_euclidean | 0.8401 |
|
419 |
+
| pearson_dot | 0.7855 |
|
420 |
+
| spearman_dot | 0.7814 |
|
421 |
+
| pearson_max | 0.8423 |
|
422 |
+
| spearman_max | 0.8478 |
|
423 |
+
|
424 |
+
#### Semantic Similarity
|
425 |
+
* Dataset: `sts-dev-512`
|
426 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
427 |
+
|
428 |
+
| Metric | Value |
|
429 |
+
|:--------------------|:----------|
|
430 |
+
| pearson_cosine | 0.8395 |
|
431 |
+
| **spearman_cosine** | **0.847** |
|
432 |
+
| pearson_manhattan | 0.8399 |
|
433 |
+
| spearman_manhattan | 0.8377 |
|
434 |
+
| pearson_euclidean | 0.8407 |
|
435 |
+
| spearman_euclidean | 0.838 |
|
436 |
+
| pearson_dot | 0.7811 |
|
437 |
+
| spearman_dot | 0.7777 |
|
438 |
+
| pearson_max | 0.8407 |
|
439 |
+
| spearman_max | 0.847 |
|
440 |
+
|
441 |
+
#### Semantic Similarity
|
442 |
+
* Dataset: `sts-dev-256`
|
443 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
444 |
+
|
445 |
+
| Metric | Value |
|
446 |
+
|:--------------------|:-----------|
|
447 |
+
| pearson_cosine | 0.8327 |
|
448 |
+
| **spearman_cosine** | **0.8436** |
|
449 |
+
| pearson_manhattan | 0.8351 |
|
450 |
+
| spearman_manhattan | 0.8332 |
|
451 |
+
| pearson_euclidean | 0.836 |
|
452 |
+
| spearman_euclidean | 0.8338 |
|
453 |
+
| pearson_dot | 0.75 |
|
454 |
+
| spearman_dot | 0.7453 |
|
455 |
+
| pearson_max | 0.836 |
|
456 |
+
| spearman_max | 0.8436 |
|
457 |
+
|
458 |
+
#### Semantic Similarity
|
459 |
+
* Dataset: `sts-dev-128`
|
460 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
461 |
+
|
462 |
+
| Metric | Value |
|
463 |
+
|:--------------------|:---------|
|
464 |
+
| pearson_cosine | 0.8243 |
|
465 |
+
| **spearman_cosine** | **0.84** |
|
466 |
+
| pearson_manhattan | 0.8282 |
|
467 |
+
| spearman_manhattan | 0.827 |
|
468 |
+
| pearson_euclidean | 0.8282 |
|
469 |
+
| spearman_euclidean | 0.8267 |
|
470 |
+
| pearson_dot | 0.711 |
|
471 |
+
| spearman_dot | 0.705 |
|
472 |
+
| pearson_max | 0.8282 |
|
473 |
+
| spearman_max | 0.84 |
|
474 |
+
|
475 |
+
#### Semantic Similarity
|
476 |
+
* Dataset: `sts-dev-64`
|
477 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
478 |
+
|
479 |
+
| Metric | Value |
|
480 |
+
|:--------------------|:-----------|
|
481 |
+
| pearson_cosine | 0.8116 |
|
482 |
+
| **spearman_cosine** | **0.8317** |
|
483 |
+
| pearson_manhattan | 0.8113 |
|
484 |
+
| spearman_manhattan | 0.8105 |
|
485 |
+
| pearson_euclidean | 0.8114 |
|
486 |
+
| spearman_euclidean | 0.8111 |
|
487 |
+
| pearson_dot | 0.6412 |
|
488 |
+
| spearman_dot | 0.6347 |
|
489 |
+
| pearson_max | 0.8116 |
|
490 |
+
| spearman_max | 0.8317 |
|
491 |
+
|
492 |
+
#### Semantic Similarity
|
493 |
+
* Dataset: `sts-dev-32`
|
494 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
495 |
+
|
496 |
+
| Metric | Value |
|
497 |
+
|:--------------------|:-----------|
|
498 |
+
| pearson_cosine | 0.7834 |
|
499 |
+
| **spearman_cosine** | **0.8141** |
|
500 |
+
| pearson_manhattan | 0.7832 |
|
501 |
+
| spearman_manhattan | 0.786 |
|
502 |
+
| pearson_euclidean | 0.7869 |
|
503 |
+
| spearman_euclidean | 0.7894 |
|
504 |
+
| pearson_dot | 0.5534 |
|
505 |
+
| spearman_dot | 0.5449 |
|
506 |
+
| pearson_max | 0.7869 |
|
507 |
+
| spearman_max | 0.8141 |
|
508 |
+
|
509 |
+
#### Semantic Similarity
|
510 |
+
* Dataset: `sts-dev-16`
|
511 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
512 |
+
|
513 |
+
| Metric | Value |
|
514 |
+
|:--------------------|:-----------|
|
515 |
+
| pearson_cosine | 0.7259 |
|
516 |
+
| **spearman_cosine** | **0.7751** |
|
517 |
+
| pearson_manhattan | 0.7421 |
|
518 |
+
| spearman_manhattan | 0.7553 |
|
519 |
+
| pearson_euclidean | 0.7483 |
|
520 |
+
| spearman_euclidean | 0.7599 |
|
521 |
+
| pearson_dot | 0.4387 |
|
522 |
+
| spearman_dot | 0.4259 |
|
523 |
+
| pearson_max | 0.7483 |
|
524 |
+
| spearman_max | 0.7751 |
|
525 |
+
|
526 |
+
<!--
|
527 |
+
## Bias, Risks and Limitations
|
528 |
+
|
529 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
530 |
+
-->
|
531 |
+
|
532 |
+
<!--
|
533 |
+
### Recommendations
|
534 |
+
|
535 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
536 |
+
-->
|
537 |
+
|
538 |
+
## Training Details
|
539 |
+
|
540 |
+
### Training Dataset
|
541 |
+
|
542 |
+
#### sentence-transformers/all-nli
|
543 |
+
|
544 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
545 |
+
* Size: 557,850 training samples
|
546 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
547 |
+
* Approximate statistics based on the first 1000 samples:
|
548 |
+
| | anchor | positive | negative |
|
549 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
550 |
+
| type | string | string | string |
|
551 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
|
552 |
+
* Samples:
|
553 |
+
| anchor | positive | negative |
|
554 |
+
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
|
555 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
556 |
+
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
557 |
+
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
558 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
559 |
+
```json
|
560 |
+
{
|
561 |
+
"loss": "MultipleNegativesRankingLoss",
|
562 |
+
"matryoshka_dims": [
|
563 |
+
768,
|
564 |
+
512,
|
565 |
+
256,
|
566 |
+
128,
|
567 |
+
64,
|
568 |
+
32,
|
569 |
+
16
|
570 |
+
],
|
571 |
+
"matryoshka_weights": [
|
572 |
+
1,
|
573 |
+
1,
|
574 |
+
1,
|
575 |
+
1,
|
576 |
+
1,
|
577 |
+
1,
|
578 |
+
1
|
579 |
+
],
|
580 |
+
"n_dims_per_step": -1
|
581 |
+
}
|
582 |
+
```
|
583 |
+
|
584 |
+
### Evaluation Dataset
|
585 |
+
|
586 |
+
#### sentence-transformers/all-nli
|
587 |
+
|
588 |
+
* Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
589 |
+
* Size: 6,584 evaluation samples
|
590 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
591 |
+
* Approximate statistics based on the first 1000 samples:
|
592 |
+
| | anchor | positive | negative |
|
593 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
594 |
+
| type | string | string | string |
|
595 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> |
|
596 |
+
* Samples:
|
597 |
+
| anchor | positive | negative |
|
598 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
|
599 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
600 |
+
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
601 |
+
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
602 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
603 |
+
```json
|
604 |
+
{
|
605 |
+
"loss": "MultipleNegativesRankingLoss",
|
606 |
+
"matryoshka_dims": [
|
607 |
+
768,
|
608 |
+
512,
|
609 |
+
256,
|
610 |
+
128,
|
611 |
+
64,
|
612 |
+
32,
|
613 |
+
16
|
614 |
+
],
|
615 |
+
"matryoshka_weights": [
|
616 |
+
1,
|
617 |
+
1,
|
618 |
+
1,
|
619 |
+
1,
|
620 |
+
1,
|
621 |
+
1,
|
622 |
+
1
|
623 |
+
],
|
624 |
+
"n_dims_per_step": -1
|
625 |
+
}
|
626 |
+
```
|
627 |
+
|
628 |
+
### Training Hyperparameters
|
629 |
+
#### Non-Default Hyperparameters
|
630 |
+
|
631 |
+
- `eval_strategy`: steps
|
632 |
+
- `per_device_train_batch_size`: 128
|
633 |
+
- `per_device_eval_batch_size`: 128
|
634 |
+
- `num_train_epochs`: 1
|
635 |
+
- `warmup_ratio`: 0.1
|
636 |
+
- `fp16`: True
|
637 |
+
- `batch_sampler`: no_duplicates
|
638 |
+
|
639 |
+
#### All Hyperparameters
|
640 |
+
<details><summary>Click to expand</summary>
|
641 |
+
|
642 |
+
- `overwrite_output_dir`: False
|
643 |
+
- `do_predict`: False
|
644 |
+
- `eval_strategy`: steps
|
645 |
+
- `prediction_loss_only`: True
|
646 |
+
- `per_device_train_batch_size`: 128
|
647 |
+
- `per_device_eval_batch_size`: 128
|
648 |
+
- `per_gpu_train_batch_size`: None
|
649 |
+
- `per_gpu_eval_batch_size`: None
|
650 |
+
- `gradient_accumulation_steps`: 1
|
651 |
+
- `eval_accumulation_steps`: None
|
652 |
+
- `learning_rate`: 5e-05
|
653 |
+
- `weight_decay`: 0.0
|
654 |
+
- `adam_beta1`: 0.9
|
655 |
+
- `adam_beta2`: 0.999
|
656 |
+
- `adam_epsilon`: 1e-08
|
657 |
+
- `max_grad_norm`: 1.0
|
658 |
+
- `num_train_epochs`: 1
|
659 |
+
- `max_steps`: -1
|
660 |
+
- `lr_scheduler_type`: linear
|
661 |
+
- `lr_scheduler_kwargs`: {}
|
662 |
+
- `warmup_ratio`: 0.1
|
663 |
+
- `warmup_steps`: 0
|
664 |
+
- `log_level`: passive
|
665 |
+
- `log_level_replica`: warning
|
666 |
+
- `log_on_each_node`: True
|
667 |
+
- `logging_nan_inf_filter`: True
|
668 |
+
- `save_safetensors`: True
|
669 |
+
- `save_on_each_node`: False
|
670 |
+
- `save_only_model`: False
|
671 |
+
- `restore_callback_states_from_checkpoint`: False
|
672 |
+
- `no_cuda`: False
|
673 |
+
- `use_cpu`: False
|
674 |
+
- `use_mps_device`: False
|
675 |
+
- `seed`: 42
|
676 |
+
- `data_seed`: None
|
677 |
+
- `jit_mode_eval`: False
|
678 |
+
- `use_ipex`: False
|
679 |
+
- `bf16`: False
|
680 |
+
- `fp16`: True
|
681 |
+
- `fp16_opt_level`: O1
|
682 |
+
- `half_precision_backend`: auto
|
683 |
+
- `bf16_full_eval`: False
|
684 |
+
- `fp16_full_eval`: False
|
685 |
+
- `tf32`: None
|
686 |
+
- `local_rank`: 0
|
687 |
+
- `ddp_backend`: None
|
688 |
+
- `tpu_num_cores`: None
|
689 |
+
- `tpu_metrics_debug`: False
|
690 |
+
- `debug`: []
|
691 |
+
- `dataloader_drop_last`: False
|
692 |
+
- `dataloader_num_workers`: 0
|
693 |
+
- `dataloader_prefetch_factor`: None
|
694 |
+
- `past_index`: -1
|
695 |
+
- `disable_tqdm`: False
|
696 |
+
- `remove_unused_columns`: True
|
697 |
+
- `label_names`: None
|
698 |
+
- `load_best_model_at_end`: False
|
699 |
+
- `ignore_data_skip`: False
|
700 |
+
- `fsdp`: []
|
701 |
+
- `fsdp_min_num_params`: 0
|
702 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
703 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
704 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
705 |
+
- `deepspeed`: None
|
706 |
+
- `label_smoothing_factor`: 0.0
|
707 |
+
- `optim`: adamw_torch
|
708 |
+
- `optim_args`: None
|
709 |
+
- `adafactor`: False
|
710 |
+
- `group_by_length`: False
|
711 |
+
- `length_column_name`: length
|
712 |
+
- `ddp_find_unused_parameters`: None
|
713 |
+
- `ddp_bucket_cap_mb`: None
|
714 |
+
- `ddp_broadcast_buffers`: False
|
715 |
+
- `dataloader_pin_memory`: True
|
716 |
+
- `dataloader_persistent_workers`: False
|
717 |
+
- `skip_memory_metrics`: True
|
718 |
+
- `use_legacy_prediction_loop`: False
|
719 |
+
- `push_to_hub`: False
|
720 |
+
- `resume_from_checkpoint`: None
|
721 |
+
- `hub_model_id`: None
|
722 |
+
- `hub_strategy`: every_save
|
723 |
+
- `hub_private_repo`: False
|
724 |
+
- `hub_always_push`: False
|
725 |
+
- `gradient_checkpointing`: False
|
726 |
+
- `gradient_checkpointing_kwargs`: None
|
727 |
+
- `include_inputs_for_metrics`: False
|
728 |
+
- `eval_do_concat_batches`: True
|
729 |
+
- `fp16_backend`: auto
|
730 |
+
- `push_to_hub_model_id`: None
|
731 |
+
- `push_to_hub_organization`: None
|
732 |
+
- `mp_parameters`:
|
733 |
+
- `auto_find_batch_size`: False
|
734 |
+
- `full_determinism`: False
|
735 |
+
- `torchdynamo`: None
|
736 |
+
- `ray_scope`: last
|
737 |
+
- `ddp_timeout`: 1800
|
738 |
+
- `torch_compile`: False
|
739 |
+
- `torch_compile_backend`: None
|
740 |
+
- `torch_compile_mode`: None
|
741 |
+
- `dispatch_batches`: None
|
742 |
+
- `split_batches`: None
|
743 |
+
- `include_tokens_per_second`: False
|
744 |
+
- `include_num_input_tokens_seen`: False
|
745 |
+
- `neftune_noise_alpha`: None
|
746 |
+
- `optim_target_modules`: None
|
747 |
+
- `batch_eval_metrics`: False
|
748 |
+
- `batch_sampler`: no_duplicates
|
749 |
+
- `multi_dataset_batch_sampler`: proportional
|
750 |
+
|
751 |
+
</details>
|
752 |
+
|
753 |
+
### Training Logs
|
754 |
+
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-16_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine |
|
755 |
+
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|
|
756 |
+
| 0.0229 | 100 | 29.0917 | 14.1514 | 0.7659 | 0.7440 | 0.7915 | 0.7749 | 0.7999 | 0.7909 | 0.7918 |
|
757 |
+
| 0.0459 | 200 | 15.6915 | 11.7031 | 0.7718 | 0.7487 | 0.7940 | 0.7776 | 0.8005 | 0.7931 | 0.7871 |
|
758 |
+
| 0.0688 | 300 | 14.3136 | 11.1970 | 0.7744 | 0.7389 | 0.7952 | 0.7728 | 0.8036 | 0.7925 | 0.7938 |
|
759 |
+
| 0.0918 | 400 | 12.8122 | 10.4416 | 0.7899 | 0.7536 | 0.8040 | 0.7764 | 0.8065 | 0.7953 | 0.8018 |
|
760 |
+
| 0.1147 | 500 | 12.1747 | 10.5491 | 0.7871 | 0.7513 | 0.8035 | 0.7785 | 0.8094 | 0.7978 | 0.8008 |
|
761 |
+
| 0.1376 | 600 | 11.6784 | 9.6618 | 0.7785 | 0.7465 | 0.7956 | 0.7762 | 0.8027 | 0.7953 | 0.7935 |
|
762 |
+
| 0.1606 | 700 | 11.9351 | 9.3279 | 0.7907 | 0.7403 | 0.7995 | 0.7706 | 0.8036 | 0.7894 | 0.7982 |
|
763 |
+
| 0.1835 | 800 | 10.4998 | 9.1538 | 0.7911 | 0.7516 | 0.8043 | 0.7820 | 0.8078 | 0.8025 | 0.8010 |
|
764 |
+
| 0.2065 | 900 | 10.6069 | 9.0531 | 0.7874 | 0.7371 | 0.7974 | 0.7704 | 0.8042 | 0.7910 | 0.8010 |
|
765 |
+
| 0.2294 | 1000 | 10.0316 | 8.9759 | 0.7842 | 0.7356 | 0.7981 | 0.7721 | 0.8024 | 0.7905 | 0.7955 |
|
766 |
+
| 0.2524 | 1100 | 10.199 | 8.5398 | 0.7863 | 0.7322 | 0.7961 | 0.7691 | 0.8002 | 0.7910 | 0.7936 |
|
767 |
+
| 0.2753 | 1200 | 9.9393 | 8.1356 | 0.7860 | 0.7304 | 0.7990 | 0.7682 | 0.8025 | 0.7908 | 0.7954 |
|
768 |
+
| 0.2982 | 1300 | 9.8711 | 7.9177 | 0.7932 | 0.7319 | 0.8028 | 0.7708 | 0.8067 | 0.7924 | 0.8013 |
|
769 |
+
| 0.3212 | 1400 | 9.3594 | 7.8870 | 0.7892 | 0.7296 | 0.8032 | 0.7710 | 0.8070 | 0.7961 | 0.8030 |
|
770 |
+
| 0.3441 | 1500 | 9.4534 | 7.5756 | 0.8003 | 0.7518 | 0.8078 | 0.7857 | 0.8112 | 0.8063 | 0.8068 |
|
771 |
+
| 0.3671 | 1600 | 8.9061 | 7.8164 | 0.7781 | 0.7390 | 0.7942 | 0.7761 | 0.8002 | 0.7968 | 0.7941 |
|
772 |
+
| 0.3900 | 1700 | 8.5164 | 7.4869 | 0.7934 | 0.7530 | 0.8063 | 0.7864 | 0.8120 | 0.8055 | 0.8080 |
|
773 |
+
| 0.4129 | 1800 | 8.9262 | 7.7155 | 0.7846 | 0.7301 | 0.7991 | 0.7728 | 0.8065 | 0.7945 | 0.8003 |
|
774 |
+
| 0.4359 | 1900 | 8.3242 | 7.3068 | 0.7850 | 0.7273 | 0.7976 | 0.7710 | 0.8020 | 0.7904 | 0.7976 |
|
775 |
+
| 0.4588 | 2000 | 8.5374 | 7.1026 | 0.7845 | 0.7272 | 0.7993 | 0.7717 | 0.8042 | 0.7925 | 0.7963 |
|
776 |
+
| 0.4818 | 2100 | 8.2304 | 7.1601 | 0.7879 | 0.7354 | 0.8015 | 0.7719 | 0.8059 | 0.7944 | 0.8029 |
|
777 |
+
| 0.5047 | 2200 | 8.1347 | 7.8267 | 0.7715 | 0.7230 | 0.7889 | 0.7626 | 0.7956 | 0.7849 | 0.7930 |
|
778 |
+
| 0.5276 | 2300 | 8.3057 | 8.0057 | 0.7622 | 0.7148 | 0.7814 | 0.7572 | 0.7881 | 0.7769 | 0.7836 |
|
779 |
+
| 0.5506 | 2400 | 8.215 | 7.6922 | 0.7772 | 0.7210 | 0.7929 | 0.7637 | 0.7995 | 0.7858 | 0.7956 |
|
780 |
+
| 0.5735 | 2500 | 8.4343 | 7.2104 | 0.7869 | 0.7307 | 0.8017 | 0.7707 | 0.8071 | 0.7929 | 0.8048 |
|
781 |
+
| 0.5965 | 2600 | 8.159 | 6.9977 | 0.7893 | 0.7297 | 0.8031 | 0.7733 | 0.8071 | 0.7928 | 0.8045 |
|
782 |
+
| 0.6194 | 2700 | 8.2048 | 6.9465 | 0.7859 | 0.7280 | 0.8006 | 0.7725 | 0.8052 | 0.7926 | 0.8004 |
|
783 |
+
| 0.6423 | 2800 | 8.187 | 7.3185 | 0.7790 | 0.7266 | 0.7960 | 0.7690 | 0.8018 | 0.7911 | 0.7964 |
|
784 |
+
| 0.6653 | 2900 | 8.4768 | 7.5535 | 0.7756 | 0.7192 | 0.7913 | 0.7618 | 0.7958 | 0.7827 | 0.7907 |
|
785 |
+
| 0.6882 | 3000 | 8.4153 | 7.3732 | 0.7825 | 0.7276 | 0.7988 | 0.7692 | 0.8029 | 0.7899 | 0.7988 |
|
786 |
+
| 0.7112 | 3100 | 7.9226 | 6.8469 | 0.7912 | 0.7311 | 0.8055 | 0.7765 | 0.8101 | 0.7977 | 0.8058 |
|
787 |
+
| 0.7341 | 3200 | 8.1155 | 6.7604 | 0.7880 | 0.7298 | 0.8024 | 0.7747 | 0.8071 | 0.7959 | 0.8025 |
|
788 |
+
| 0.7571 | 3300 | 6.8463 | 5.4863 | 0.8357 | 0.7638 | 0.8407 | 0.8085 | 0.8431 | 0.8283 | 0.8440 |
|
789 |
+
| 0.7800 | 3400 | 5.2008 | 5.2472 | 0.8362 | 0.7655 | 0.8401 | 0.8105 | 0.8429 | 0.8279 | 0.8445 |
|
790 |
+
| 0.8029 | 3500 | 4.5415 | 5.1649 | 0.8385 | 0.7700 | 0.8421 | 0.8138 | 0.8454 | 0.8304 | 0.8465 |
|
791 |
+
| 0.8259 | 3600 | 4.4474 | 5.0933 | 0.8371 | 0.7693 | 0.8410 | 0.8112 | 0.8443 | 0.8288 | 0.8451 |
|
792 |
+
| 0.8488 | 3700 | 4.12 | 5.0555 | 0.8396 | 0.7718 | 0.8439 | 0.8140 | 0.8463 | 0.8311 | 0.8471 |
|
793 |
+
| 0.8718 | 3800 | 3.9104 | 5.0147 | 0.8386 | 0.7749 | 0.8432 | 0.8129 | 0.8459 | 0.8304 | 0.8471 |
|
794 |
+
| 0.8947 | 3900 | 3.9054 | 4.9966 | 0.8379 | 0.7733 | 0.8424 | 0.8125 | 0.8456 | 0.8296 | 0.8464 |
|
795 |
+
| 0.9176 | 4000 | 3.757 | 4.9892 | 0.8407 | 0.7763 | 0.8447 | 0.8156 | 0.8478 | 0.8326 | 0.8488 |
|
796 |
+
| 0.9406 | 4100 | 3.7729 | 4.9859 | 0.8400 | 0.7751 | 0.8436 | 0.8141 | 0.8470 | 0.8317 | 0.8478 |
|
797 |
+
|
798 |
+
|
799 |
+
### Framework Versions
|
800 |
+
- Python: 3.10.12
|
801 |
+
- Sentence Transformers: 3.0.0
|
802 |
+
- Transformers: 4.41.1
|
803 |
+
- PyTorch: 2.3.0+cu121
|
804 |
+
- Accelerate: 0.30.1
|
805 |
+
- Datasets: 2.19.2
|
806 |
+
- Tokenizers: 0.19.1
|
807 |
+
|
808 |
+
## Citation
|
809 |
+
|
810 |
+
### BibTeX
|
811 |
+
|
812 |
+
#### Sentence Transformers
|
813 |
+
```bibtex
|
814 |
+
@inproceedings{reimers-2019-sentence-bert,
|
815 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
816 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
817 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
818 |
+
month = "11",
|
819 |
+
year = "2019",
|
820 |
+
publisher = "Association for Computational Linguistics",
|
821 |
+
url = "https://arxiv.org/abs/1908.10084",
|
822 |
+
}
|
823 |
+
```
|
824 |
+
|
825 |
+
#### MatryoshkaLoss
|
826 |
+
```bibtex
|
827 |
+
@misc{kusupati2024matryoshka,
|
828 |
+
title={Matryoshka Representation Learning},
|
829 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
830 |
+
year={2024},
|
831 |
+
eprint={2205.13147},
|
832 |
+
archivePrefix={arXiv},
|
833 |
+
primaryClass={cs.LG}
|
834 |
+
}
|
835 |
+
```
|
836 |
+
|
837 |
+
#### MultipleNegativesRankingLoss
|
838 |
+
```bibtex
|
839 |
+
@misc{henderson2017efficient,
|
840 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
841 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
842 |
+
year={2017},
|
843 |
+
eprint={1705.00652},
|
844 |
+
archivePrefix={arXiv},
|
845 |
+
primaryClass={cs.CL}
|
846 |
+
}
|
847 |
+
```
|
848 |
+
|
849 |
+
<!--
|
850 |
+
## Glossary
|
851 |
+
|
852 |
+
*Clearly define terms in order to be accessible across audiences.*
|
853 |
+
-->
|
854 |
+
|
855 |
+
<!--
|
856 |
+
## Model Card Authors
|
857 |
+
|
858 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
859 |
+
-->
|
860 |
+
|
861 |
+
<!--
|
862 |
+
## Model Card Contact
|
863 |
+
|
864 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
865 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/content/drive/MyDrive/matryoshka_nli_distilroberta-base_128_bs_1_e_768-16/checkpoint-4100",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 6,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.41.2",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 50265
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80c515d8e10f0472f601cb7863a8b93b9ff9f87442df20ac7ed8e4bb8e412bdb
|
3 |
+
size 328485128
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"bos_token": "<s>",
|
46 |
+
"clean_up_tokenization_spaces": true,
|
47 |
+
"cls_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
"errors": "replace",
|
50 |
+
"mask_token": "<mask>",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"pad_to_multiple_of": null,
|
54 |
+
"pad_token": "<pad>",
|
55 |
+
"pad_token_type_id": 0,
|
56 |
+
"padding_side": "right",
|
57 |
+
"sep_token": "</s>",
|
58 |
+
"stride": 0,
|
59 |
+
"tokenizer_class": "RobertaTokenizer",
|
60 |
+
"trim_offsets": true,
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "<unk>"
|
64 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|