mrm8488 commited on
Commit
29efd03
1 Parent(s): e75f987

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,865 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:100K<n<1M
10
+ - loss:MatryoshkaLoss
11
+ - loss:MultipleNegativesRankingLoss
12
+ base_model: distilbert/distilroberta-base
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: Test Rocks
26
+ sentences:
27
+ - Number of testimonies
28
+ - People are at a pool.
29
+ - I've never been to Asia
30
+ - source_sentence: No animals.
31
+ sentences:
32
+ - We don't have a dog.
33
+ - These boys are on bikes
34
+ - A person is climbing.
35
+ - source_sentence: Shrinking.
36
+ sentences:
37
+ - That doesn't seem fair.
38
+ - A man reads the paper.
39
+ - I've never been to Asia
40
+ - source_sentence: Loire Valley
41
+ sentences:
42
+ - A Lake in Loire.
43
+ - people stand near pole
44
+ - A cat is licking itself.
45
+ - source_sentence: It is well.
46
+ sentences:
47
+ - That's convenient.
48
+ - away from the children
49
+ - She hated the restaurant!
50
+ pipeline_tag: sentence-similarity
51
+ model-index:
52
+ - name: SentenceTransformer based on distilbert/distilroberta-base
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev 768
59
+ type: sts-dev-768
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.8413274730706258
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.8478057476815382
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.8414182910991368
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.8394684211369814
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.8423380151813549
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.8401129676358965
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.7854982058734802
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.7814388303641997
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.8423380151813549
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.8478057476815382
90
+ name: Spearman Max
91
+ - task:
92
+ type: semantic-similarity
93
+ name: Semantic Similarity
94
+ dataset:
95
+ name: sts dev 512
96
+ type: sts-dev-512
97
+ metrics:
98
+ - type: pearson_cosine
99
+ value: 0.8394744649386727
100
+ name: Pearson Cosine
101
+ - type: spearman_cosine
102
+ value: 0.8469596264857904
103
+ name: Spearman Cosine
104
+ - type: pearson_manhattan
105
+ value: 0.8398552366754626
106
+ name: Pearson Manhattan
107
+ - type: spearman_manhattan
108
+ value: 0.8377241640608183
109
+ name: Spearman Manhattan
110
+ - type: pearson_euclidean
111
+ value: 0.8406514989809173
112
+ name: Pearson Euclidean
113
+ - type: spearman_euclidean
114
+ value: 0.8380050330376462
115
+ name: Spearman Euclidean
116
+ - type: pearson_dot
117
+ value: 0.7811135781647157
118
+ name: Pearson Dot
119
+ - type: spearman_dot
120
+ value: 0.7776714775017128
121
+ name: Spearman Dot
122
+ - type: pearson_max
123
+ value: 0.8406514989809173
124
+ name: Pearson Max
125
+ - type: spearman_max
126
+ value: 0.8469596264857904
127
+ name: Spearman Max
128
+ - task:
129
+ type: semantic-similarity
130
+ name: Semantic Similarity
131
+ dataset:
132
+ name: sts dev 256
133
+ type: sts-dev-256
134
+ metrics:
135
+ - type: pearson_cosine
136
+ value: 0.8326846589795867
137
+ name: Pearson Cosine
138
+ - type: spearman_cosine
139
+ value: 0.8435757360139872
140
+ name: Spearman Cosine
141
+ - type: pearson_manhattan
142
+ value: 0.835121668379584
143
+ name: Pearson Manhattan
144
+ - type: spearman_manhattan
145
+ value: 0.833167770567356
146
+ name: Spearman Manhattan
147
+ - type: pearson_euclidean
148
+ value: 0.8359785864160201
149
+ name: Pearson Euclidean
150
+ - type: spearman_euclidean
151
+ value: 0.8337674519096212
152
+ name: Spearman Euclidean
153
+ - type: pearson_dot
154
+ value: 0.7499541215721716
155
+ name: Pearson Dot
156
+ - type: spearman_dot
157
+ value: 0.7452815230357489
158
+ name: Spearman Dot
159
+ - type: pearson_max
160
+ value: 0.8359785864160201
161
+ name: Pearson Max
162
+ - type: spearman_max
163
+ value: 0.8435757360139872
164
+ name: Spearman Max
165
+ - task:
166
+ type: semantic-similarity
167
+ name: Semantic Similarity
168
+ dataset:
169
+ name: sts dev 128
170
+ type: sts-dev-128
171
+ metrics:
172
+ - type: pearson_cosine
173
+ value: 0.8243384464323462
174
+ name: Pearson Cosine
175
+ - type: spearman_cosine
176
+ value: 0.8399706247679909
177
+ name: Spearman Cosine
178
+ - type: pearson_manhattan
179
+ value: 0.8281897604718583
180
+ name: Pearson Manhattan
181
+ - type: spearman_manhattan
182
+ value: 0.8270317815639731
183
+ name: Spearman Manhattan
184
+ - type: pearson_euclidean
185
+ value: 0.8281918243965822
186
+ name: Pearson Euclidean
187
+ - type: spearman_euclidean
188
+ value: 0.8267242273030063
189
+ name: Spearman Euclidean
190
+ - type: pearson_dot
191
+ value: 0.7110017325551932
192
+ name: Pearson Dot
193
+ - type: spearman_dot
194
+ value: 0.7049602384186016
195
+ name: Spearman Dot
196
+ - type: pearson_max
197
+ value: 0.8281918243965822
198
+ name: Pearson Max
199
+ - type: spearman_max
200
+ value: 0.8399706247679909
201
+ name: Spearman Max
202
+ - task:
203
+ type: semantic-similarity
204
+ name: Semantic Similarity
205
+ dataset:
206
+ name: sts dev 64
207
+ type: sts-dev-64
208
+ metrics:
209
+ - type: pearson_cosine
210
+ value: 0.811599959622093
211
+ name: Pearson Cosine
212
+ - type: spearman_cosine
213
+ value: 0.8316629408285197
214
+ name: Spearman Cosine
215
+ - type: pearson_manhattan
216
+ value: 0.8113103800424869
217
+ name: Pearson Manhattan
218
+ - type: spearman_manhattan
219
+ value: 0.8104916438729426
220
+ name: Spearman Manhattan
221
+ - type: pearson_euclidean
222
+ value: 0.8113924334973999
223
+ name: Pearson Euclidean
224
+ - type: spearman_euclidean
225
+ value: 0.8110877753624469
226
+ name: Spearman Euclidean
227
+ - type: pearson_dot
228
+ value: 0.641225674602723
229
+ name: Pearson Dot
230
+ - type: spearman_dot
231
+ value: 0.6346995881423587
232
+ name: Spearman Dot
233
+ - type: pearson_max
234
+ value: 0.811599959622093
235
+ name: Pearson Max
236
+ - type: spearman_max
237
+ value: 0.8316629408285197
238
+ name: Spearman Max
239
+ - task:
240
+ type: semantic-similarity
241
+ name: Semantic Similarity
242
+ dataset:
243
+ name: sts dev 32
244
+ type: sts-dev-32
245
+ metrics:
246
+ - type: pearson_cosine
247
+ value: 0.7834130163353433
248
+ name: Pearson Cosine
249
+ - type: spearman_cosine
250
+ value: 0.814057381112976
251
+ name: Spearman Cosine
252
+ - type: pearson_manhattan
253
+ value: 0.7831854350286095
254
+ name: Pearson Manhattan
255
+ - type: spearman_manhattan
256
+ value: 0.7859760066096324
257
+ name: Spearman Manhattan
258
+ - type: pearson_euclidean
259
+ value: 0.7868628503474937
260
+ name: Pearson Euclidean
261
+ - type: spearman_euclidean
262
+ value: 0.7893614397994021
263
+ name: Spearman Euclidean
264
+ - type: pearson_dot
265
+ value: 0.5533705216922039
266
+ name: Pearson Dot
267
+ - type: spearman_dot
268
+ value: 0.5449230360083127
269
+ name: Spearman Dot
270
+ - type: pearson_max
271
+ value: 0.7868628503474937
272
+ name: Pearson Max
273
+ - type: spearman_max
274
+ value: 0.814057381112976
275
+ name: Spearman Max
276
+ - task:
277
+ type: semantic-similarity
278
+ name: Semantic Similarity
279
+ dataset:
280
+ name: sts dev 16
281
+ type: sts-dev-16
282
+ metrics:
283
+ - type: pearson_cosine
284
+ value: 0.7259201534121641
285
+ name: Pearson Cosine
286
+ - type: spearman_cosine
287
+ value: 0.7751337117844075
288
+ name: Spearman Cosine
289
+ - type: pearson_manhattan
290
+ value: 0.7420762055565752
291
+ name: Pearson Manhattan
292
+ - type: spearman_manhattan
293
+ value: 0.7552849049126117
294
+ name: Spearman Manhattan
295
+ - type: pearson_euclidean
296
+ value: 0.7483211915991654
297
+ name: Pearson Euclidean
298
+ - type: spearman_euclidean
299
+ value: 0.759888035465032
300
+ name: Spearman Euclidean
301
+ - type: pearson_dot
302
+ value: 0.4387404126202509
303
+ name: Pearson Dot
304
+ - type: spearman_dot
305
+ value: 0.42591442860202633
306
+ name: Spearman Dot
307
+ - type: pearson_max
308
+ value: 0.7483211915991654
309
+ name: Pearson Max
310
+ - type: spearman_max
311
+ value: 0.7751337117844075
312
+ name: Spearman Max
313
+ ---
314
+
315
+ # SentenceTransformer based on distilbert/distilroberta-base
316
+
317
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
318
+
319
+ ## Model Details
320
+
321
+ ### Model Description
322
+ - **Model Type:** Sentence Transformer
323
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
324
+ - **Maximum Sequence Length:** 512 tokens
325
+ - **Output Dimensionality:** 768 tokens
326
+ - **Similarity Function:** Cosine Similarity
327
+ - **Training Dataset:**
328
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
329
+ - **Language:** en
330
+ <!-- - **License:** Unknown -->
331
+
332
+ ### Model Sources
333
+
334
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
335
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
336
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
337
+
338
+ ### Full Model Architecture
339
+
340
+ ```
341
+ SentenceTransformer(
342
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
343
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
344
+ )
345
+ ```
346
+
347
+ ## Usage
348
+
349
+ ### Direct Usage (Sentence Transformers)
350
+
351
+ First install the Sentence Transformers library:
352
+
353
+ ```bash
354
+ pip install -U sentence-transformers
355
+ ```
356
+
357
+ Then you can load this model and run inference.
358
+ ```python
359
+ from sentence_transformers import SentenceTransformer
360
+
361
+ # Download from the 🤗 Hub
362
+ model = SentenceTransformer("mrm8488/distilroberta-base-ft-allnli-matryoshka-768-16-1e-128bs")
363
+ # Run inference
364
+ sentences = [
365
+ 'It is well.',
366
+ "That's convenient.",
367
+ 'away from the children',
368
+ ]
369
+ embeddings = model.encode(sentences)
370
+ print(embeddings.shape)
371
+ # [3, 768]
372
+
373
+ # Get the similarity scores for the embeddings
374
+ similarities = model.similarity(embeddings, embeddings)
375
+ print(similarities.shape)
376
+ # [3, 3]
377
+ ```
378
+
379
+ <!--
380
+ ### Direct Usage (Transformers)
381
+
382
+ <details><summary>Click to see the direct usage in Transformers</summary>
383
+
384
+ </details>
385
+ -->
386
+
387
+ <!--
388
+ ### Downstream Usage (Sentence Transformers)
389
+
390
+ You can finetune this model on your own dataset.
391
+
392
+ <details><summary>Click to expand</summary>
393
+
394
+ </details>
395
+ -->
396
+
397
+ <!--
398
+ ### Out-of-Scope Use
399
+
400
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
401
+ -->
402
+
403
+ ## Evaluation
404
+
405
+ ### Metrics
406
+
407
+ #### Semantic Similarity
408
+ * Dataset: `sts-dev-768`
409
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
410
+
411
+ | Metric | Value |
412
+ |:--------------------|:-----------|
413
+ | pearson_cosine | 0.8413 |
414
+ | **spearman_cosine** | **0.8478** |
415
+ | pearson_manhattan | 0.8414 |
416
+ | spearman_manhattan | 0.8395 |
417
+ | pearson_euclidean | 0.8423 |
418
+ | spearman_euclidean | 0.8401 |
419
+ | pearson_dot | 0.7855 |
420
+ | spearman_dot | 0.7814 |
421
+ | pearson_max | 0.8423 |
422
+ | spearman_max | 0.8478 |
423
+
424
+ #### Semantic Similarity
425
+ * Dataset: `sts-dev-512`
426
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
427
+
428
+ | Metric | Value |
429
+ |:--------------------|:----------|
430
+ | pearson_cosine | 0.8395 |
431
+ | **spearman_cosine** | **0.847** |
432
+ | pearson_manhattan | 0.8399 |
433
+ | spearman_manhattan | 0.8377 |
434
+ | pearson_euclidean | 0.8407 |
435
+ | spearman_euclidean | 0.838 |
436
+ | pearson_dot | 0.7811 |
437
+ | spearman_dot | 0.7777 |
438
+ | pearson_max | 0.8407 |
439
+ | spearman_max | 0.847 |
440
+
441
+ #### Semantic Similarity
442
+ * Dataset: `sts-dev-256`
443
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
444
+
445
+ | Metric | Value |
446
+ |:--------------------|:-----------|
447
+ | pearson_cosine | 0.8327 |
448
+ | **spearman_cosine** | **0.8436** |
449
+ | pearson_manhattan | 0.8351 |
450
+ | spearman_manhattan | 0.8332 |
451
+ | pearson_euclidean | 0.836 |
452
+ | spearman_euclidean | 0.8338 |
453
+ | pearson_dot | 0.75 |
454
+ | spearman_dot | 0.7453 |
455
+ | pearson_max | 0.836 |
456
+ | spearman_max | 0.8436 |
457
+
458
+ #### Semantic Similarity
459
+ * Dataset: `sts-dev-128`
460
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
461
+
462
+ | Metric | Value |
463
+ |:--------------------|:---------|
464
+ | pearson_cosine | 0.8243 |
465
+ | **spearman_cosine** | **0.84** |
466
+ | pearson_manhattan | 0.8282 |
467
+ | spearman_manhattan | 0.827 |
468
+ | pearson_euclidean | 0.8282 |
469
+ | spearman_euclidean | 0.8267 |
470
+ | pearson_dot | 0.711 |
471
+ | spearman_dot | 0.705 |
472
+ | pearson_max | 0.8282 |
473
+ | spearman_max | 0.84 |
474
+
475
+ #### Semantic Similarity
476
+ * Dataset: `sts-dev-64`
477
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
478
+
479
+ | Metric | Value |
480
+ |:--------------------|:-----------|
481
+ | pearson_cosine | 0.8116 |
482
+ | **spearman_cosine** | **0.8317** |
483
+ | pearson_manhattan | 0.8113 |
484
+ | spearman_manhattan | 0.8105 |
485
+ | pearson_euclidean | 0.8114 |
486
+ | spearman_euclidean | 0.8111 |
487
+ | pearson_dot | 0.6412 |
488
+ | spearman_dot | 0.6347 |
489
+ | pearson_max | 0.8116 |
490
+ | spearman_max | 0.8317 |
491
+
492
+ #### Semantic Similarity
493
+ * Dataset: `sts-dev-32`
494
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
495
+
496
+ | Metric | Value |
497
+ |:--------------------|:-----------|
498
+ | pearson_cosine | 0.7834 |
499
+ | **spearman_cosine** | **0.8141** |
500
+ | pearson_manhattan | 0.7832 |
501
+ | spearman_manhattan | 0.786 |
502
+ | pearson_euclidean | 0.7869 |
503
+ | spearman_euclidean | 0.7894 |
504
+ | pearson_dot | 0.5534 |
505
+ | spearman_dot | 0.5449 |
506
+ | pearson_max | 0.7869 |
507
+ | spearman_max | 0.8141 |
508
+
509
+ #### Semantic Similarity
510
+ * Dataset: `sts-dev-16`
511
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
512
+
513
+ | Metric | Value |
514
+ |:--------------------|:-----------|
515
+ | pearson_cosine | 0.7259 |
516
+ | **spearman_cosine** | **0.7751** |
517
+ | pearson_manhattan | 0.7421 |
518
+ | spearman_manhattan | 0.7553 |
519
+ | pearson_euclidean | 0.7483 |
520
+ | spearman_euclidean | 0.7599 |
521
+ | pearson_dot | 0.4387 |
522
+ | spearman_dot | 0.4259 |
523
+ | pearson_max | 0.7483 |
524
+ | spearman_max | 0.7751 |
525
+
526
+ <!--
527
+ ## Bias, Risks and Limitations
528
+
529
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
530
+ -->
531
+
532
+ <!--
533
+ ### Recommendations
534
+
535
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
536
+ -->
537
+
538
+ ## Training Details
539
+
540
+ ### Training Dataset
541
+
542
+ #### sentence-transformers/all-nli
543
+
544
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
545
+ * Size: 557,850 training samples
546
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
547
+ * Approximate statistics based on the first 1000 samples:
548
+ | | anchor | positive | negative |
549
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
550
+ | type | string | string | string |
551
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
552
+ * Samples:
553
+ | anchor | positive | negative |
554
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
555
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
556
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
557
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
558
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
559
+ ```json
560
+ {
561
+ "loss": "MultipleNegativesRankingLoss",
562
+ "matryoshka_dims": [
563
+ 768,
564
+ 512,
565
+ 256,
566
+ 128,
567
+ 64,
568
+ 32,
569
+ 16
570
+ ],
571
+ "matryoshka_weights": [
572
+ 1,
573
+ 1,
574
+ 1,
575
+ 1,
576
+ 1,
577
+ 1,
578
+ 1
579
+ ],
580
+ "n_dims_per_step": -1
581
+ }
582
+ ```
583
+
584
+ ### Evaluation Dataset
585
+
586
+ #### sentence-transformers/all-nli
587
+
588
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
589
+ * Size: 6,584 evaluation samples
590
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
591
+ * Approximate statistics based on the first 1000 samples:
592
+ | | anchor | positive | negative |
593
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
594
+ | type | string | string | string |
595
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.02 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.81 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.37 tokens</li><li>max: 29 tokens</li></ul> |
596
+ * Samples:
597
+ | anchor | positive | negative |
598
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
599
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
600
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
601
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
602
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
603
+ ```json
604
+ {
605
+ "loss": "MultipleNegativesRankingLoss",
606
+ "matryoshka_dims": [
607
+ 768,
608
+ 512,
609
+ 256,
610
+ 128,
611
+ 64,
612
+ 32,
613
+ 16
614
+ ],
615
+ "matryoshka_weights": [
616
+ 1,
617
+ 1,
618
+ 1,
619
+ 1,
620
+ 1,
621
+ 1,
622
+ 1
623
+ ],
624
+ "n_dims_per_step": -1
625
+ }
626
+ ```
627
+
628
+ ### Training Hyperparameters
629
+ #### Non-Default Hyperparameters
630
+
631
+ - `eval_strategy`: steps
632
+ - `per_device_train_batch_size`: 128
633
+ - `per_device_eval_batch_size`: 128
634
+ - `num_train_epochs`: 1
635
+ - `warmup_ratio`: 0.1
636
+ - `fp16`: True
637
+ - `batch_sampler`: no_duplicates
638
+
639
+ #### All Hyperparameters
640
+ <details><summary>Click to expand</summary>
641
+
642
+ - `overwrite_output_dir`: False
643
+ - `do_predict`: False
644
+ - `eval_strategy`: steps
645
+ - `prediction_loss_only`: True
646
+ - `per_device_train_batch_size`: 128
647
+ - `per_device_eval_batch_size`: 128
648
+ - `per_gpu_train_batch_size`: None
649
+ - `per_gpu_eval_batch_size`: None
650
+ - `gradient_accumulation_steps`: 1
651
+ - `eval_accumulation_steps`: None
652
+ - `learning_rate`: 5e-05
653
+ - `weight_decay`: 0.0
654
+ - `adam_beta1`: 0.9
655
+ - `adam_beta2`: 0.999
656
+ - `adam_epsilon`: 1e-08
657
+ - `max_grad_norm`: 1.0
658
+ - `num_train_epochs`: 1
659
+ - `max_steps`: -1
660
+ - `lr_scheduler_type`: linear
661
+ - `lr_scheduler_kwargs`: {}
662
+ - `warmup_ratio`: 0.1
663
+ - `warmup_steps`: 0
664
+ - `log_level`: passive
665
+ - `log_level_replica`: warning
666
+ - `log_on_each_node`: True
667
+ - `logging_nan_inf_filter`: True
668
+ - `save_safetensors`: True
669
+ - `save_on_each_node`: False
670
+ - `save_only_model`: False
671
+ - `restore_callback_states_from_checkpoint`: False
672
+ - `no_cuda`: False
673
+ - `use_cpu`: False
674
+ - `use_mps_device`: False
675
+ - `seed`: 42
676
+ - `data_seed`: None
677
+ - `jit_mode_eval`: False
678
+ - `use_ipex`: False
679
+ - `bf16`: False
680
+ - `fp16`: True
681
+ - `fp16_opt_level`: O1
682
+ - `half_precision_backend`: auto
683
+ - `bf16_full_eval`: False
684
+ - `fp16_full_eval`: False
685
+ - `tf32`: None
686
+ - `local_rank`: 0
687
+ - `ddp_backend`: None
688
+ - `tpu_num_cores`: None
689
+ - `tpu_metrics_debug`: False
690
+ - `debug`: []
691
+ - `dataloader_drop_last`: False
692
+ - `dataloader_num_workers`: 0
693
+ - `dataloader_prefetch_factor`: None
694
+ - `past_index`: -1
695
+ - `disable_tqdm`: False
696
+ - `remove_unused_columns`: True
697
+ - `label_names`: None
698
+ - `load_best_model_at_end`: False
699
+ - `ignore_data_skip`: False
700
+ - `fsdp`: []
701
+ - `fsdp_min_num_params`: 0
702
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
703
+ - `fsdp_transformer_layer_cls_to_wrap`: None
704
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
705
+ - `deepspeed`: None
706
+ - `label_smoothing_factor`: 0.0
707
+ - `optim`: adamw_torch
708
+ - `optim_args`: None
709
+ - `adafactor`: False
710
+ - `group_by_length`: False
711
+ - `length_column_name`: length
712
+ - `ddp_find_unused_parameters`: None
713
+ - `ddp_bucket_cap_mb`: None
714
+ - `ddp_broadcast_buffers`: False
715
+ - `dataloader_pin_memory`: True
716
+ - `dataloader_persistent_workers`: False
717
+ - `skip_memory_metrics`: True
718
+ - `use_legacy_prediction_loop`: False
719
+ - `push_to_hub`: False
720
+ - `resume_from_checkpoint`: None
721
+ - `hub_model_id`: None
722
+ - `hub_strategy`: every_save
723
+ - `hub_private_repo`: False
724
+ - `hub_always_push`: False
725
+ - `gradient_checkpointing`: False
726
+ - `gradient_checkpointing_kwargs`: None
727
+ - `include_inputs_for_metrics`: False
728
+ - `eval_do_concat_batches`: True
729
+ - `fp16_backend`: auto
730
+ - `push_to_hub_model_id`: None
731
+ - `push_to_hub_organization`: None
732
+ - `mp_parameters`:
733
+ - `auto_find_batch_size`: False
734
+ - `full_determinism`: False
735
+ - `torchdynamo`: None
736
+ - `ray_scope`: last
737
+ - `ddp_timeout`: 1800
738
+ - `torch_compile`: False
739
+ - `torch_compile_backend`: None
740
+ - `torch_compile_mode`: None
741
+ - `dispatch_batches`: None
742
+ - `split_batches`: None
743
+ - `include_tokens_per_second`: False
744
+ - `include_num_input_tokens_seen`: False
745
+ - `neftune_noise_alpha`: None
746
+ - `optim_target_modules`: None
747
+ - `batch_eval_metrics`: False
748
+ - `batch_sampler`: no_duplicates
749
+ - `multi_dataset_batch_sampler`: proportional
750
+
751
+ </details>
752
+
753
+ ### Training Logs
754
+ | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-16_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine |
755
+ |:------:|:----:|:-------------:|:-------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|
756
+ | 0.0229 | 100 | 29.0917 | 14.1514 | 0.7659 | 0.7440 | 0.7915 | 0.7749 | 0.7999 | 0.7909 | 0.7918 |
757
+ | 0.0459 | 200 | 15.6915 | 11.7031 | 0.7718 | 0.7487 | 0.7940 | 0.7776 | 0.8005 | 0.7931 | 0.7871 |
758
+ | 0.0688 | 300 | 14.3136 | 11.1970 | 0.7744 | 0.7389 | 0.7952 | 0.7728 | 0.8036 | 0.7925 | 0.7938 |
759
+ | 0.0918 | 400 | 12.8122 | 10.4416 | 0.7899 | 0.7536 | 0.8040 | 0.7764 | 0.8065 | 0.7953 | 0.8018 |
760
+ | 0.1147 | 500 | 12.1747 | 10.5491 | 0.7871 | 0.7513 | 0.8035 | 0.7785 | 0.8094 | 0.7978 | 0.8008 |
761
+ | 0.1376 | 600 | 11.6784 | 9.6618 | 0.7785 | 0.7465 | 0.7956 | 0.7762 | 0.8027 | 0.7953 | 0.7935 |
762
+ | 0.1606 | 700 | 11.9351 | 9.3279 | 0.7907 | 0.7403 | 0.7995 | 0.7706 | 0.8036 | 0.7894 | 0.7982 |
763
+ | 0.1835 | 800 | 10.4998 | 9.1538 | 0.7911 | 0.7516 | 0.8043 | 0.7820 | 0.8078 | 0.8025 | 0.8010 |
764
+ | 0.2065 | 900 | 10.6069 | 9.0531 | 0.7874 | 0.7371 | 0.7974 | 0.7704 | 0.8042 | 0.7910 | 0.8010 |
765
+ | 0.2294 | 1000 | 10.0316 | 8.9759 | 0.7842 | 0.7356 | 0.7981 | 0.7721 | 0.8024 | 0.7905 | 0.7955 |
766
+ | 0.2524 | 1100 | 10.199 | 8.5398 | 0.7863 | 0.7322 | 0.7961 | 0.7691 | 0.8002 | 0.7910 | 0.7936 |
767
+ | 0.2753 | 1200 | 9.9393 | 8.1356 | 0.7860 | 0.7304 | 0.7990 | 0.7682 | 0.8025 | 0.7908 | 0.7954 |
768
+ | 0.2982 | 1300 | 9.8711 | 7.9177 | 0.7932 | 0.7319 | 0.8028 | 0.7708 | 0.8067 | 0.7924 | 0.8013 |
769
+ | 0.3212 | 1400 | 9.3594 | 7.8870 | 0.7892 | 0.7296 | 0.8032 | 0.7710 | 0.8070 | 0.7961 | 0.8030 |
770
+ | 0.3441 | 1500 | 9.4534 | 7.5756 | 0.8003 | 0.7518 | 0.8078 | 0.7857 | 0.8112 | 0.8063 | 0.8068 |
771
+ | 0.3671 | 1600 | 8.9061 | 7.8164 | 0.7781 | 0.7390 | 0.7942 | 0.7761 | 0.8002 | 0.7968 | 0.7941 |
772
+ | 0.3900 | 1700 | 8.5164 | 7.4869 | 0.7934 | 0.7530 | 0.8063 | 0.7864 | 0.8120 | 0.8055 | 0.8080 |
773
+ | 0.4129 | 1800 | 8.9262 | 7.7155 | 0.7846 | 0.7301 | 0.7991 | 0.7728 | 0.8065 | 0.7945 | 0.8003 |
774
+ | 0.4359 | 1900 | 8.3242 | 7.3068 | 0.7850 | 0.7273 | 0.7976 | 0.7710 | 0.8020 | 0.7904 | 0.7976 |
775
+ | 0.4588 | 2000 | 8.5374 | 7.1026 | 0.7845 | 0.7272 | 0.7993 | 0.7717 | 0.8042 | 0.7925 | 0.7963 |
776
+ | 0.4818 | 2100 | 8.2304 | 7.1601 | 0.7879 | 0.7354 | 0.8015 | 0.7719 | 0.8059 | 0.7944 | 0.8029 |
777
+ | 0.5047 | 2200 | 8.1347 | 7.8267 | 0.7715 | 0.7230 | 0.7889 | 0.7626 | 0.7956 | 0.7849 | 0.7930 |
778
+ | 0.5276 | 2300 | 8.3057 | 8.0057 | 0.7622 | 0.7148 | 0.7814 | 0.7572 | 0.7881 | 0.7769 | 0.7836 |
779
+ | 0.5506 | 2400 | 8.215 | 7.6922 | 0.7772 | 0.7210 | 0.7929 | 0.7637 | 0.7995 | 0.7858 | 0.7956 |
780
+ | 0.5735 | 2500 | 8.4343 | 7.2104 | 0.7869 | 0.7307 | 0.8017 | 0.7707 | 0.8071 | 0.7929 | 0.8048 |
781
+ | 0.5965 | 2600 | 8.159 | 6.9977 | 0.7893 | 0.7297 | 0.8031 | 0.7733 | 0.8071 | 0.7928 | 0.8045 |
782
+ | 0.6194 | 2700 | 8.2048 | 6.9465 | 0.7859 | 0.7280 | 0.8006 | 0.7725 | 0.8052 | 0.7926 | 0.8004 |
783
+ | 0.6423 | 2800 | 8.187 | 7.3185 | 0.7790 | 0.7266 | 0.7960 | 0.7690 | 0.8018 | 0.7911 | 0.7964 |
784
+ | 0.6653 | 2900 | 8.4768 | 7.5535 | 0.7756 | 0.7192 | 0.7913 | 0.7618 | 0.7958 | 0.7827 | 0.7907 |
785
+ | 0.6882 | 3000 | 8.4153 | 7.3732 | 0.7825 | 0.7276 | 0.7988 | 0.7692 | 0.8029 | 0.7899 | 0.7988 |
786
+ | 0.7112 | 3100 | 7.9226 | 6.8469 | 0.7912 | 0.7311 | 0.8055 | 0.7765 | 0.8101 | 0.7977 | 0.8058 |
787
+ | 0.7341 | 3200 | 8.1155 | 6.7604 | 0.7880 | 0.7298 | 0.8024 | 0.7747 | 0.8071 | 0.7959 | 0.8025 |
788
+ | 0.7571 | 3300 | 6.8463 | 5.4863 | 0.8357 | 0.7638 | 0.8407 | 0.8085 | 0.8431 | 0.8283 | 0.8440 |
789
+ | 0.7800 | 3400 | 5.2008 | 5.2472 | 0.8362 | 0.7655 | 0.8401 | 0.8105 | 0.8429 | 0.8279 | 0.8445 |
790
+ | 0.8029 | 3500 | 4.5415 | 5.1649 | 0.8385 | 0.7700 | 0.8421 | 0.8138 | 0.8454 | 0.8304 | 0.8465 |
791
+ | 0.8259 | 3600 | 4.4474 | 5.0933 | 0.8371 | 0.7693 | 0.8410 | 0.8112 | 0.8443 | 0.8288 | 0.8451 |
792
+ | 0.8488 | 3700 | 4.12 | 5.0555 | 0.8396 | 0.7718 | 0.8439 | 0.8140 | 0.8463 | 0.8311 | 0.8471 |
793
+ | 0.8718 | 3800 | 3.9104 | 5.0147 | 0.8386 | 0.7749 | 0.8432 | 0.8129 | 0.8459 | 0.8304 | 0.8471 |
794
+ | 0.8947 | 3900 | 3.9054 | 4.9966 | 0.8379 | 0.7733 | 0.8424 | 0.8125 | 0.8456 | 0.8296 | 0.8464 |
795
+ | 0.9176 | 4000 | 3.757 | 4.9892 | 0.8407 | 0.7763 | 0.8447 | 0.8156 | 0.8478 | 0.8326 | 0.8488 |
796
+ | 0.9406 | 4100 | 3.7729 | 4.9859 | 0.8400 | 0.7751 | 0.8436 | 0.8141 | 0.8470 | 0.8317 | 0.8478 |
797
+
798
+
799
+ ### Framework Versions
800
+ - Python: 3.10.12
801
+ - Sentence Transformers: 3.0.0
802
+ - Transformers: 4.41.1
803
+ - PyTorch: 2.3.0+cu121
804
+ - Accelerate: 0.30.1
805
+ - Datasets: 2.19.2
806
+ - Tokenizers: 0.19.1
807
+
808
+ ## Citation
809
+
810
+ ### BibTeX
811
+
812
+ #### Sentence Transformers
813
+ ```bibtex
814
+ @inproceedings{reimers-2019-sentence-bert,
815
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
816
+ author = "Reimers, Nils and Gurevych, Iryna",
817
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
818
+ month = "11",
819
+ year = "2019",
820
+ publisher = "Association for Computational Linguistics",
821
+ url = "https://arxiv.org/abs/1908.10084",
822
+ }
823
+ ```
824
+
825
+ #### MatryoshkaLoss
826
+ ```bibtex
827
+ @misc{kusupati2024matryoshka,
828
+ title={Matryoshka Representation Learning},
829
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
830
+ year={2024},
831
+ eprint={2205.13147},
832
+ archivePrefix={arXiv},
833
+ primaryClass={cs.LG}
834
+ }
835
+ ```
836
+
837
+ #### MultipleNegativesRankingLoss
838
+ ```bibtex
839
+ @misc{henderson2017efficient,
840
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
841
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
842
+ year={2017},
843
+ eprint={1705.00652},
844
+ archivePrefix={arXiv},
845
+ primaryClass={cs.CL}
846
+ }
847
+ ```
848
+
849
+ <!--
850
+ ## Glossary
851
+
852
+ *Clearly define terms in order to be accessible across audiences.*
853
+ -->
854
+
855
+ <!--
856
+ ## Model Card Authors
857
+
858
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
859
+ -->
860
+
861
+ <!--
862
+ ## Model Card Contact
863
+
864
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
865
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/drive/MyDrive/matryoshka_nli_distilroberta-base_128_bs_1_e_768-16/checkpoint-4100",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.41.2",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80c515d8e10f0472f601cb7863a8b93b9ff9f87442df20ac7ed8e4bb8e412bdb
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "<pad>",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "</s>",
58
+ "stride": 0,
59
+ "tokenizer_class": "RobertaTokenizer",
60
+ "trim_offsets": true,
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "<unk>"
64
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff