mrm8488 commited on
Commit
76de2ac
1 Parent(s): 6e28fde

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dataset_size:1K<n<10K
10
+ - loss:MatryoshkaLoss
11
+ - loss:CoSENTLoss
12
+ base_model: distilbert/distilbert-base-uncased
13
+ metrics:
14
+ - pearson_cosine
15
+ - spearman_cosine
16
+ - pearson_manhattan
17
+ - spearman_manhattan
18
+ - pearson_euclidean
19
+ - spearman_euclidean
20
+ - pearson_dot
21
+ - spearman_dot
22
+ - pearson_max
23
+ - spearman_max
24
+ widget:
25
+ - source_sentence: A plane in the sky.
26
+ sentences:
27
+ - Two airplanes in the sky.
28
+ - Two women are sitting in a cafe.
29
+ - Turkey's PM Warns Against Protests
30
+ - source_sentence: A man jumping rope
31
+ sentences:
32
+ - A man climbs a rope.
33
+ - Blast on Indian train kills one
34
+ - Israel expands subsidies to settlements
35
+ - source_sentence: A baby is laughing.
36
+ sentences:
37
+ - The baby laughed in his car seat.
38
+ - The girl is playing the guitar.
39
+ - Bangladesh Islamist leader executed
40
+ - source_sentence: A plane is landing.
41
+ sentences:
42
+ - A animated airplane is landing.
43
+ - A man plays an acoustic guitar.
44
+ - Obama urges no new sanctions on Iran
45
+ - source_sentence: A boy is vacuuming.
46
+ sentences:
47
+ - A little boy is vacuuming the floor.
48
+ - Suicide bomber strikes in Syria
49
+ - 32 die in Bangladesh protest
50
+ pipeline_tag: sentence-similarity
51
+ model-index:
52
+ - name: SentenceTransformer based on distilbert/distilbert-base-uncased
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev 768
59
+ type: sts-dev-768
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.8580007118837358
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.871820299536176
66
+ name: Spearman Cosine
67
+ - type: pearson_manhattan
68
+ value: 0.8579597824452743
69
+ name: Pearson Manhattan
70
+ - type: spearman_manhattan
71
+ value: 0.8611676230134329
72
+ name: Spearman Manhattan
73
+ - type: pearson_euclidean
74
+ value: 0.8584693242993966
75
+ name: Pearson Euclidean
76
+ - type: spearman_euclidean
77
+ value: 0.8617539394714434
78
+ name: Spearman Euclidean
79
+ - type: pearson_dot
80
+ value: 0.6259192943899555
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.6245849846631494
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.8584693242993966
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.871820299536176
90
+ name: Spearman Max
91
+ - task:
92
+ type: semantic-similarity
93
+ name: Semantic Similarity
94
+ dataset:
95
+ name: sts dev 512
96
+ type: sts-dev-512
97
+ metrics:
98
+ - type: pearson_cosine
99
+ value: 0.855328467168775
100
+ name: Pearson Cosine
101
+ - type: spearman_cosine
102
+ value: 0.8708546925464771
103
+ name: Spearman Cosine
104
+ - type: pearson_manhattan
105
+ value: 0.8571701704416792
106
+ name: Pearson Manhattan
107
+ - type: spearman_manhattan
108
+ value: 0.8609603329646862
109
+ name: Spearman Manhattan
110
+ - type: pearson_euclidean
111
+ value: 0.8577665956034857
112
+ name: Pearson Euclidean
113
+ - type: spearman_euclidean
114
+ value: 0.8611867637483455
115
+ name: Spearman Euclidean
116
+ - type: pearson_dot
117
+ value: 0.6301839390729895
118
+ name: Pearson Dot
119
+ - type: spearman_dot
120
+ value: 0.6312551259723912
121
+ name: Spearman Dot
122
+ - type: pearson_max
123
+ value: 0.8577665956034857
124
+ name: Pearson Max
125
+ - type: spearman_max
126
+ value: 0.8708546925464771
127
+ name: Spearman Max
128
+ - task:
129
+ type: semantic-similarity
130
+ name: Semantic Similarity
131
+ dataset:
132
+ name: sts dev 256
133
+ type: sts-dev-256
134
+ metrics:
135
+ - type: pearson_cosine
136
+ value: 0.8534192140857989
137
+ name: Pearson Cosine
138
+ - type: spearman_cosine
139
+ value: 0.8684742287834586
140
+ name: Spearman Cosine
141
+ - type: pearson_manhattan
142
+ value: 0.8550376893582918
143
+ name: Pearson Manhattan
144
+ - type: spearman_manhattan
145
+ value: 0.8595873940460774
146
+ name: Spearman Manhattan
147
+ - type: pearson_euclidean
148
+ value: 0.855243500036296
149
+ name: Pearson Euclidean
150
+ - type: spearman_euclidean
151
+ value: 0.8595389790366662
152
+ name: Spearman Euclidean
153
+ - type: pearson_dot
154
+ value: 0.5692600956239565
155
+ name: Pearson Dot
156
+ - type: spearman_dot
157
+ value: 0.5631798664802073
158
+ name: Spearman Dot
159
+ - type: pearson_max
160
+ value: 0.855243500036296
161
+ name: Pearson Max
162
+ - type: spearman_max
163
+ value: 0.8684742287834586
164
+ name: Spearman Max
165
+ - task:
166
+ type: semantic-similarity
167
+ name: Semantic Similarity
168
+ dataset:
169
+ name: sts dev 128
170
+ type: sts-dev-128
171
+ metrics:
172
+ - type: pearson_cosine
173
+ value: 0.8437376978373121
174
+ name: Pearson Cosine
175
+ - type: spearman_cosine
176
+ value: 0.8634082420330794
177
+ name: Spearman Cosine
178
+ - type: pearson_manhattan
179
+ value: 0.8454596574177755
180
+ name: Pearson Manhattan
181
+ - type: spearman_manhattan
182
+ value: 0.85188111210432
183
+ name: Spearman Manhattan
184
+ - type: pearson_euclidean
185
+ value: 0.8479887421152008
186
+ name: Pearson Euclidean
187
+ - type: spearman_euclidean
188
+ value: 0.8537259447832961
189
+ name: Spearman Euclidean
190
+ - type: pearson_dot
191
+ value: 0.5513203019384504
192
+ name: Pearson Dot
193
+ - type: spearman_dot
194
+ value: 0.5500687993669725
195
+ name: Spearman Dot
196
+ - type: pearson_max
197
+ value: 0.8479887421152008
198
+ name: Pearson Max
199
+ - type: spearman_max
200
+ value: 0.8634082420330794
201
+ name: Spearman Max
202
+ - task:
203
+ type: semantic-similarity
204
+ name: Semantic Similarity
205
+ dataset:
206
+ name: sts dev 64
207
+ type: sts-dev-64
208
+ metrics:
209
+ - type: pearson_cosine
210
+ value: 0.8272184719216283
211
+ name: Pearson Cosine
212
+ - type: spearman_cosine
213
+ value: 0.8541030591238341
214
+ name: Spearman Cosine
215
+ - type: pearson_manhattan
216
+ value: 0.8307462071466211
217
+ name: Pearson Manhattan
218
+ - type: spearman_manhattan
219
+ value: 0.8406982840852595
220
+ name: Spearman Manhattan
221
+ - type: pearson_euclidean
222
+ value: 0.8342382781891662
223
+ name: Pearson Euclidean
224
+ - type: spearman_euclidean
225
+ value: 0.8427338906559259
226
+ name: Spearman Euclidean
227
+ - type: pearson_dot
228
+ value: 0.494520518114596
229
+ name: Pearson Dot
230
+ - type: spearman_dot
231
+ value: 0.49218360841938574
232
+ name: Spearman Dot
233
+ - type: pearson_max
234
+ value: 0.8342382781891662
235
+ name: Pearson Max
236
+ - type: spearman_max
237
+ value: 0.8541030591238341
238
+ name: Spearman Max
239
+ - task:
240
+ type: semantic-similarity
241
+ name: Semantic Similarity
242
+ dataset:
243
+ name: sts dev 32
244
+ type: sts-dev-32
245
+ metrics:
246
+ - type: pearson_cosine
247
+ value: 0.795037446434113
248
+ name: Pearson Cosine
249
+ - type: spearman_cosine
250
+ value: 0.8337679875014413
251
+ name: Spearman Cosine
252
+ - type: pearson_manhattan
253
+ value: 0.8120635303724889
254
+ name: Pearson Manhattan
255
+ - type: spearman_manhattan
256
+ value: 0.8249212312847407
257
+ name: Spearman Manhattan
258
+ - type: pearson_euclidean
259
+ value: 0.8157607542813738
260
+ name: Pearson Euclidean
261
+ - type: spearman_euclidean
262
+ value: 0.8262833782950811
263
+ name: Spearman Euclidean
264
+ - type: pearson_dot
265
+ value: 0.44442829473227297
266
+ name: Pearson Dot
267
+ - type: spearman_dot
268
+ value: 0.4333209339301445
269
+ name: Spearman Dot
270
+ - type: pearson_max
271
+ value: 0.8157607542813738
272
+ name: Pearson Max
273
+ - type: spearman_max
274
+ value: 0.8337679875014413
275
+ name: Spearman Max
276
+ - task:
277
+ type: semantic-similarity
278
+ name: Semantic Similarity
279
+ dataset:
280
+ name: sts dev 16
281
+ type: sts-dev-16
282
+ metrics:
283
+ - type: pearson_cosine
284
+ value: 0.7402920507586056
285
+ name: Pearson Cosine
286
+ - type: spearman_cosine
287
+ value: 0.7953398971914366
288
+ name: Spearman Cosine
289
+ - type: pearson_manhattan
290
+ value: 0.7661819958789702
291
+ name: Pearson Manhattan
292
+ - type: spearman_manhattan
293
+ value: 0.7806209887724272
294
+ name: Spearman Manhattan
295
+ - type: pearson_euclidean
296
+ value: 0.7753319460863385
297
+ name: Pearson Euclidean
298
+ - type: spearman_euclidean
299
+ value: 0.788448392758016
300
+ name: Spearman Euclidean
301
+ - type: pearson_dot
302
+ value: 0.2914268467178465
303
+ name: Pearson Dot
304
+ - type: spearman_dot
305
+ value: 0.2731801701260987
306
+ name: Spearman Dot
307
+ - type: pearson_max
308
+ value: 0.7753319460863385
309
+ name: Pearson Max
310
+ - type: spearman_max
311
+ value: 0.7953398971914366
312
+ name: Spearman Max
313
+ - task:
314
+ type: semantic-similarity
315
+ name: Semantic Similarity
316
+ dataset:
317
+ name: sts test 768
318
+ type: sts-test-768
319
+ metrics:
320
+ - type: pearson_cosine
321
+ value: 0.8355126555886146
322
+ name: Pearson Cosine
323
+ - type: spearman_cosine
324
+ value: 0.8474343771835785
325
+ name: Spearman Cosine
326
+ - type: pearson_manhattan
327
+ value: 0.8477769261693708
328
+ name: Pearson Manhattan
329
+ - type: spearman_manhattan
330
+ value: 0.8440487632905719
331
+ name: Spearman Manhattan
332
+ - type: pearson_euclidean
333
+ value: 0.8482353907773731
334
+ name: Pearson Euclidean
335
+ - type: spearman_euclidean
336
+ value: 0.8443357402859023
337
+ name: Spearman Euclidean
338
+ - type: pearson_dot
339
+ value: 0.575155372226532
340
+ name: Pearson Dot
341
+ - type: spearman_dot
342
+ value: 0.5645826036063977
343
+ name: Spearman Dot
344
+ - type: pearson_max
345
+ value: 0.8482353907773731
346
+ name: Pearson Max
347
+ - type: spearman_max
348
+ value: 0.8474343771835785
349
+ name: Spearman Max
350
+ - task:
351
+ type: semantic-similarity
352
+ name: Semantic Similarity
353
+ dataset:
354
+ name: sts test 512
355
+ type: sts-test-512
356
+ metrics:
357
+ - type: pearson_cosine
358
+ value: 0.8345636179092932
359
+ name: Pearson Cosine
360
+ - type: spearman_cosine
361
+ value: 0.847969741682177
362
+ name: Spearman Cosine
363
+ - type: pearson_manhattan
364
+ value: 0.8471375569231226
365
+ name: Pearson Manhattan
366
+ - type: spearman_manhattan
367
+ value: 0.8432315278152519
368
+ name: Spearman Manhattan
369
+ - type: pearson_euclidean
370
+ value: 0.8475673449165414
371
+ name: Pearson Euclidean
372
+ - type: spearman_euclidean
373
+ value: 0.8438566473590643
374
+ name: Spearman Euclidean
375
+ - type: pearson_dot
376
+ value: 0.5890647647307824
377
+ name: Pearson Dot
378
+ - type: spearman_dot
379
+ value: 0.579599198660516
380
+ name: Spearman Dot
381
+ - type: pearson_max
382
+ value: 0.8475673449165414
383
+ name: Pearson Max
384
+ - type: spearman_max
385
+ value: 0.847969741682177
386
+ name: Spearman Max
387
+ - task:
388
+ type: semantic-similarity
389
+ name: Semantic Similarity
390
+ dataset:
391
+ name: sts test 256
392
+ type: sts-test-256
393
+ metrics:
394
+ - type: pearson_cosine
395
+ value: 0.8264268046184008
396
+ name: Pearson Cosine
397
+ - type: spearman_cosine
398
+ value: 0.8414784020776254
399
+ name: Spearman Cosine
400
+ - type: pearson_manhattan
401
+ value: 0.8414377075419083
402
+ name: Pearson Manhattan
403
+ - type: spearman_manhattan
404
+ value: 0.8388634084489552
405
+ name: Spearman Manhattan
406
+ - type: pearson_euclidean
407
+ value: 0.8423455168447094
408
+ name: Pearson Euclidean
409
+ - type: spearman_euclidean
410
+ value: 0.8400797815114284
411
+ name: Spearman Euclidean
412
+ - type: pearson_dot
413
+ value: 0.5229860109488433
414
+ name: Pearson Dot
415
+ - type: spearman_dot
416
+ value: 0.5099269577284724
417
+ name: Spearman Dot
418
+ - type: pearson_max
419
+ value: 0.8423455168447094
420
+ name: Pearson Max
421
+ - type: spearman_max
422
+ value: 0.8414784020776254
423
+ name: Spearman Max
424
+ - task:
425
+ type: semantic-similarity
426
+ name: Semantic Similarity
427
+ dataset:
428
+ name: sts test 128
429
+ type: sts-test-128
430
+ metrics:
431
+ - type: pearson_cosine
432
+ value: 0.8189773000477083
433
+ name: Pearson Cosine
434
+ - type: spearman_cosine
435
+ value: 0.837625236881656
436
+ name: Spearman Cosine
437
+ - type: pearson_manhattan
438
+ value: 0.8349887918183595
439
+ name: Pearson Manhattan
440
+ - type: spearman_manhattan
441
+ value: 0.8336489133404312
442
+ name: Spearman Manhattan
443
+ - type: pearson_euclidean
444
+ value: 0.8365085956274743
445
+ name: Pearson Euclidean
446
+ - type: spearman_euclidean
447
+ value: 0.8347627903646608
448
+ name: Spearman Euclidean
449
+ - type: pearson_dot
450
+ value: 0.49799738412782535
451
+ name: Pearson Dot
452
+ - type: spearman_dot
453
+ value: 0.48970409354637134
454
+ name: Spearman Dot
455
+ - type: pearson_max
456
+ value: 0.8365085956274743
457
+ name: Pearson Max
458
+ - type: spearman_max
459
+ value: 0.837625236881656
460
+ name: Spearman Max
461
+ - task:
462
+ type: semantic-similarity
463
+ name: Semantic Similarity
464
+ dataset:
465
+ name: sts test 64
466
+ type: sts-test-64
467
+ metrics:
468
+ - type: pearson_cosine
469
+ value: 0.8062259318483077
470
+ name: Pearson Cosine
471
+ - type: spearman_cosine
472
+ value: 0.8292433269349447
473
+ name: Spearman Cosine
474
+ - type: pearson_manhattan
475
+ value: 0.8236527010227455
476
+ name: Pearson Manhattan
477
+ - type: spearman_manhattan
478
+ value: 0.8243846152203906
479
+ name: Spearman Manhattan
480
+ - type: pearson_euclidean
481
+ value: 0.8273451113428331
482
+ name: Pearson Euclidean
483
+ - type: spearman_euclidean
484
+ value: 0.8269777736926925
485
+ name: Spearman Euclidean
486
+ - type: pearson_dot
487
+ value: 0.4318247709105578
488
+ name: Pearson Dot
489
+ - type: spearman_dot
490
+ value: 0.4325030690630689
491
+ name: Spearman Dot
492
+ - type: pearson_max
493
+ value: 0.8273451113428331
494
+ name: Pearson Max
495
+ - type: spearman_max
496
+ value: 0.8292433269349447
497
+ name: Spearman Max
498
+ - task:
499
+ type: semantic-similarity
500
+ name: Semantic Similarity
501
+ dataset:
502
+ name: sts test 32
503
+ type: sts-test-32
504
+ metrics:
505
+ - type: pearson_cosine
506
+ value: 0.7769698706658718
507
+ name: Pearson Cosine
508
+ - type: spearman_cosine
509
+ value: 0.813231133965274
510
+ name: Spearman Cosine
511
+ - type: pearson_manhattan
512
+ value: 0.8040659399939705
513
+ name: Pearson Manhattan
514
+ - type: spearman_manhattan
515
+ value: 0.8083901845044422
516
+ name: Spearman Manhattan
517
+ - type: pearson_euclidean
518
+ value: 0.8089540323890078
519
+ name: Pearson Euclidean
520
+ - type: spearman_euclidean
521
+ value: 0.8126434700070444
522
+ name: Spearman Euclidean
523
+ - type: pearson_dot
524
+ value: 0.3721968691924307
525
+ name: Pearson Dot
526
+ - type: spearman_dot
527
+ value: 0.36359211044547146
528
+ name: Spearman Dot
529
+ - type: pearson_max
530
+ value: 0.8089540323890078
531
+ name: Pearson Max
532
+ - type: spearman_max
533
+ value: 0.813231133965274
534
+ name: Spearman Max
535
+ - task:
536
+ type: semantic-similarity
537
+ name: Semantic Similarity
538
+ dataset:
539
+ name: sts test 16
540
+ type: sts-test-16
541
+ metrics:
542
+ - type: pearson_cosine
543
+ value: 0.7350580362911046
544
+ name: Pearson Cosine
545
+ - type: spearman_cosine
546
+ value: 0.7811480253828886
547
+ name: Spearman Cosine
548
+ - type: pearson_manhattan
549
+ value: 0.7686995805327835
550
+ name: Pearson Manhattan
551
+ - type: spearman_manhattan
552
+ value: 0.7767016091591996
553
+ name: Spearman Manhattan
554
+ - type: pearson_euclidean
555
+ value: 0.7732639293607727
556
+ name: Pearson Euclidean
557
+ - type: spearman_euclidean
558
+ value: 0.7798783495241994
559
+ name: Spearman Euclidean
560
+ - type: pearson_dot
561
+ value: 0.25479413300114095
562
+ name: Pearson Dot
563
+ - type: spearman_dot
564
+ value: 0.24117846955339683
565
+ name: Spearman Dot
566
+ - type: pearson_max
567
+ value: 0.7732639293607727
568
+ name: Pearson Max
569
+ - type: spearman_max
570
+ value: 0.7811480253828886
571
+ name: Spearman Max
572
+ ---
573
+
574
+ # SentenceTransformer based on distilbert/distilbert-base-uncased
575
+
576
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
577
+
578
+ ## Model Details
579
+
580
+ ### Model Description
581
+ - **Model Type:** Sentence Transformer
582
+ - **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
583
+ - **Maximum Sequence Length:** 512 tokens
584
+ - **Output Dimensionality:** 768 tokens
585
+ - **Similarity Function:** Cosine Similarity
586
+ - **Training Dataset:**
587
+ - [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
588
+ - **Language:** en
589
+ <!-- - **License:** Unknown -->
590
+
591
+ ### Model Sources
592
+
593
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
594
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
595
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
596
+
597
+ ### Full Model Architecture
598
+
599
+ ```
600
+ SentenceTransformer(
601
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
602
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
603
+ )
604
+ ```
605
+
606
+ ## Usage
607
+
608
+ ### Direct Usage (Sentence Transformers)
609
+
610
+ First install the Sentence Transformers library:
611
+
612
+ ```bash
613
+ pip install -U sentence-transformers
614
+ ```
615
+
616
+ Then you can load this model and run inference.
617
+ ```python
618
+ from sentence_transformers import SentenceTransformer
619
+
620
+ # Download from the 🤗 Hub
621
+ model = SentenceTransformer("mrm8488/distilbert-base-matryoshka-sts-v2")
622
+ # Run inference
623
+ sentences = [
624
+ 'A boy is vacuuming.',
625
+ 'A little boy is vacuuming the floor.',
626
+ 'Suicide bomber strikes in Syria',
627
+ ]
628
+ embeddings = model.encode(sentences)
629
+ print(embeddings.shape)
630
+ # [3, 768]
631
+
632
+ # Get the similarity scores for the embeddings
633
+ similarities = model.similarity(embeddings, embeddings)
634
+ print(similarities.shape)
635
+ # [3, 3]
636
+ ```
637
+
638
+ <!--
639
+ ### Direct Usage (Transformers)
640
+
641
+ <details><summary>Click to see the direct usage in Transformers</summary>
642
+
643
+ </details>
644
+ -->
645
+
646
+ <!--
647
+ ### Downstream Usage (Sentence Transformers)
648
+
649
+ You can finetune this model on your own dataset.
650
+
651
+ <details><summary>Click to expand</summary>
652
+
653
+ </details>
654
+ -->
655
+
656
+ <!--
657
+ ### Out-of-Scope Use
658
+
659
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
660
+ -->
661
+
662
+ ## Evaluation
663
+
664
+ ### Metrics
665
+
666
+ #### Semantic Similarity
667
+ * Dataset: `sts-dev-768`
668
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
669
+
670
+ | Metric | Value |
671
+ |:--------------------|:-----------|
672
+ | pearson_cosine | 0.858 |
673
+ | **spearman_cosine** | **0.8718** |
674
+ | pearson_manhattan | 0.858 |
675
+ | spearman_manhattan | 0.8612 |
676
+ | pearson_euclidean | 0.8585 |
677
+ | spearman_euclidean | 0.8618 |
678
+ | pearson_dot | 0.6259 |
679
+ | spearman_dot | 0.6246 |
680
+ | pearson_max | 0.8585 |
681
+ | spearman_max | 0.8718 |
682
+
683
+ #### Semantic Similarity
684
+ * Dataset: `sts-dev-512`
685
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
686
+
687
+ | Metric | Value |
688
+ |:--------------------|:-----------|
689
+ | pearson_cosine | 0.8553 |
690
+ | **spearman_cosine** | **0.8709** |
691
+ | pearson_manhattan | 0.8572 |
692
+ | spearman_manhattan | 0.861 |
693
+ | pearson_euclidean | 0.8578 |
694
+ | spearman_euclidean | 0.8612 |
695
+ | pearson_dot | 0.6302 |
696
+ | spearman_dot | 0.6313 |
697
+ | pearson_max | 0.8578 |
698
+ | spearman_max | 0.8709 |
699
+
700
+ #### Semantic Similarity
701
+ * Dataset: `sts-dev-256`
702
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
703
+
704
+ | Metric | Value |
705
+ |:--------------------|:-----------|
706
+ | pearson_cosine | 0.8534 |
707
+ | **spearman_cosine** | **0.8685** |
708
+ | pearson_manhattan | 0.855 |
709
+ | spearman_manhattan | 0.8596 |
710
+ | pearson_euclidean | 0.8552 |
711
+ | spearman_euclidean | 0.8595 |
712
+ | pearson_dot | 0.5693 |
713
+ | spearman_dot | 0.5632 |
714
+ | pearson_max | 0.8552 |
715
+ | spearman_max | 0.8685 |
716
+
717
+ #### Semantic Similarity
718
+ * Dataset: `sts-dev-128`
719
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
720
+
721
+ | Metric | Value |
722
+ |:--------------------|:-----------|
723
+ | pearson_cosine | 0.8437 |
724
+ | **spearman_cosine** | **0.8634** |
725
+ | pearson_manhattan | 0.8455 |
726
+ | spearman_manhattan | 0.8519 |
727
+ | pearson_euclidean | 0.848 |
728
+ | spearman_euclidean | 0.8537 |
729
+ | pearson_dot | 0.5513 |
730
+ | spearman_dot | 0.5501 |
731
+ | pearson_max | 0.848 |
732
+ | spearman_max | 0.8634 |
733
+
734
+ #### Semantic Similarity
735
+ * Dataset: `sts-dev-64`
736
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
737
+
738
+ | Metric | Value |
739
+ |:--------------------|:-----------|
740
+ | pearson_cosine | 0.8272 |
741
+ | **spearman_cosine** | **0.8541** |
742
+ | pearson_manhattan | 0.8307 |
743
+ | spearman_manhattan | 0.8407 |
744
+ | pearson_euclidean | 0.8342 |
745
+ | spearman_euclidean | 0.8427 |
746
+ | pearson_dot | 0.4945 |
747
+ | spearman_dot | 0.4922 |
748
+ | pearson_max | 0.8342 |
749
+ | spearman_max | 0.8541 |
750
+
751
+ #### Semantic Similarity
752
+ * Dataset: `sts-dev-32`
753
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
754
+
755
+ | Metric | Value |
756
+ |:--------------------|:-----------|
757
+ | pearson_cosine | 0.795 |
758
+ | **spearman_cosine** | **0.8338** |
759
+ | pearson_manhattan | 0.8121 |
760
+ | spearman_manhattan | 0.8249 |
761
+ | pearson_euclidean | 0.8158 |
762
+ | spearman_euclidean | 0.8263 |
763
+ | pearson_dot | 0.4444 |
764
+ | spearman_dot | 0.4333 |
765
+ | pearson_max | 0.8158 |
766
+ | spearman_max | 0.8338 |
767
+
768
+ #### Semantic Similarity
769
+ * Dataset: `sts-dev-16`
770
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
771
+
772
+ | Metric | Value |
773
+ |:--------------------|:-----------|
774
+ | pearson_cosine | 0.7403 |
775
+ | **spearman_cosine** | **0.7953** |
776
+ | pearson_manhattan | 0.7662 |
777
+ | spearman_manhattan | 0.7806 |
778
+ | pearson_euclidean | 0.7753 |
779
+ | spearman_euclidean | 0.7884 |
780
+ | pearson_dot | 0.2914 |
781
+ | spearman_dot | 0.2732 |
782
+ | pearson_max | 0.7753 |
783
+ | spearman_max | 0.7953 |
784
+
785
+ #### Semantic Similarity
786
+ * Dataset: `sts-test-768`
787
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
788
+
789
+ | Metric | Value |
790
+ |:--------------------|:-----------|
791
+ | pearson_cosine | 0.8355 |
792
+ | **spearman_cosine** | **0.8474** |
793
+ | pearson_manhattan | 0.8478 |
794
+ | spearman_manhattan | 0.844 |
795
+ | pearson_euclidean | 0.8482 |
796
+ | spearman_euclidean | 0.8443 |
797
+ | pearson_dot | 0.5752 |
798
+ | spearman_dot | 0.5646 |
799
+ | pearson_max | 0.8482 |
800
+ | spearman_max | 0.8474 |
801
+
802
+ #### Semantic Similarity
803
+ * Dataset: `sts-test-512`
804
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
805
+
806
+ | Metric | Value |
807
+ |:--------------------|:----------|
808
+ | pearson_cosine | 0.8346 |
809
+ | **spearman_cosine** | **0.848** |
810
+ | pearson_manhattan | 0.8471 |
811
+ | spearman_manhattan | 0.8432 |
812
+ | pearson_euclidean | 0.8476 |
813
+ | spearman_euclidean | 0.8439 |
814
+ | pearson_dot | 0.5891 |
815
+ | spearman_dot | 0.5796 |
816
+ | pearson_max | 0.8476 |
817
+ | spearman_max | 0.848 |
818
+
819
+ #### Semantic Similarity
820
+ * Dataset: `sts-test-256`
821
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
822
+
823
+ | Metric | Value |
824
+ |:--------------------|:-----------|
825
+ | pearson_cosine | 0.8264 |
826
+ | **spearman_cosine** | **0.8415** |
827
+ | pearson_manhattan | 0.8414 |
828
+ | spearman_manhattan | 0.8389 |
829
+ | pearson_euclidean | 0.8423 |
830
+ | spearman_euclidean | 0.8401 |
831
+ | pearson_dot | 0.523 |
832
+ | spearman_dot | 0.5099 |
833
+ | pearson_max | 0.8423 |
834
+ | spearman_max | 0.8415 |
835
+
836
+ #### Semantic Similarity
837
+ * Dataset: `sts-test-128`
838
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
839
+
840
+ | Metric | Value |
841
+ |:--------------------|:-----------|
842
+ | pearson_cosine | 0.819 |
843
+ | **spearman_cosine** | **0.8376** |
844
+ | pearson_manhattan | 0.835 |
845
+ | spearman_manhattan | 0.8336 |
846
+ | pearson_euclidean | 0.8365 |
847
+ | spearman_euclidean | 0.8348 |
848
+ | pearson_dot | 0.498 |
849
+ | spearman_dot | 0.4897 |
850
+ | pearson_max | 0.8365 |
851
+ | spearman_max | 0.8376 |
852
+
853
+ #### Semantic Similarity
854
+ * Dataset: `sts-test-64`
855
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
856
+
857
+ | Metric | Value |
858
+ |:--------------------|:-----------|
859
+ | pearson_cosine | 0.8062 |
860
+ | **spearman_cosine** | **0.8292** |
861
+ | pearson_manhattan | 0.8237 |
862
+ | spearman_manhattan | 0.8244 |
863
+ | pearson_euclidean | 0.8273 |
864
+ | spearman_euclidean | 0.827 |
865
+ | pearson_dot | 0.4318 |
866
+ | spearman_dot | 0.4325 |
867
+ | pearson_max | 0.8273 |
868
+ | spearman_max | 0.8292 |
869
+
870
+ #### Semantic Similarity
871
+ * Dataset: `sts-test-32`
872
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
873
+
874
+ | Metric | Value |
875
+ |:--------------------|:-----------|
876
+ | pearson_cosine | 0.777 |
877
+ | **spearman_cosine** | **0.8132** |
878
+ | pearson_manhattan | 0.8041 |
879
+ | spearman_manhattan | 0.8084 |
880
+ | pearson_euclidean | 0.809 |
881
+ | spearman_euclidean | 0.8126 |
882
+ | pearson_dot | 0.3722 |
883
+ | spearman_dot | 0.3636 |
884
+ | pearson_max | 0.809 |
885
+ | spearman_max | 0.8132 |
886
+
887
+ #### Semantic Similarity
888
+ * Dataset: `sts-test-16`
889
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
890
+
891
+ | Metric | Value |
892
+ |:--------------------|:-----------|
893
+ | pearson_cosine | 0.7351 |
894
+ | **spearman_cosine** | **0.7811** |
895
+ | pearson_manhattan | 0.7687 |
896
+ | spearman_manhattan | 0.7767 |
897
+ | pearson_euclidean | 0.7733 |
898
+ | spearman_euclidean | 0.7799 |
899
+ | pearson_dot | 0.2548 |
900
+ | spearman_dot | 0.2412 |
901
+ | pearson_max | 0.7733 |
902
+ | spearman_max | 0.7811 |
903
+
904
+ <!--
905
+ ## Bias, Risks and Limitations
906
+
907
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
908
+ -->
909
+
910
+ <!--
911
+ ### Recommendations
912
+
913
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
914
+ -->
915
+
916
+ ## Training Details
917
+
918
+ ### Training Dataset
919
+
920
+ #### sentence-transformers/stsb
921
+
922
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
923
+ * Size: 5,749 training samples
924
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
925
+ * Approximate statistics based on the first 1000 samples:
926
+ | | sentence1 | sentence2 | score |
927
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
928
+ | type | string | string | float |
929
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
930
+ * Samples:
931
+ | sentence1 | sentence2 | score |
932
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
933
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
934
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
935
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
936
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
937
+ ```json
938
+ {
939
+ "loss": "CoSENTLoss",
940
+ "matryoshka_dims": [
941
+ 768,
942
+ 512,
943
+ 256,
944
+ 128,
945
+ 64,
946
+ 32,
947
+ 16
948
+ ],
949
+ "matryoshka_weights": [
950
+ 1,
951
+ 1,
952
+ 1,
953
+ 1,
954
+ 1,
955
+ 1,
956
+ 1
957
+ ],
958
+ "n_dims_per_step": -1
959
+ }
960
+ ```
961
+
962
+ ### Evaluation Dataset
963
+
964
+ #### sentence-transformers/stsb
965
+
966
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
967
+ * Size: 1,500 evaluation samples
968
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
969
+ * Approximate statistics based on the first 1000 samples:
970
+ | | sentence1 | sentence2 | score |
971
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
972
+ | type | string | string | float |
973
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
974
+ * Samples:
975
+ | sentence1 | sentence2 | score |
976
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
977
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
978
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
979
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
980
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
981
+ ```json
982
+ {
983
+ "loss": "CoSENTLoss",
984
+ "matryoshka_dims": [
985
+ 768,
986
+ 512,
987
+ 256,
988
+ 128,
989
+ 64,
990
+ 32,
991
+ 16
992
+ ],
993
+ "matryoshka_weights": [
994
+ 1,
995
+ 1,
996
+ 1,
997
+ 1,
998
+ 1,
999
+ 1,
1000
+ 1
1001
+ ],
1002
+ "n_dims_per_step": -1
1003
+ }
1004
+ ```
1005
+
1006
+ ### Training Hyperparameters
1007
+ #### Non-Default Hyperparameters
1008
+
1009
+ - `eval_strategy`: steps
1010
+ - `per_device_train_batch_size`: 128
1011
+ - `per_device_eval_batch_size`: 128
1012
+ - `num_train_epochs`: 4
1013
+ - `warmup_ratio`: 0.1
1014
+ - `bf16`: True
1015
+
1016
+ #### All Hyperparameters
1017
+ <details><summary>Click to expand</summary>
1018
+
1019
+ - `overwrite_output_dir`: False
1020
+ - `do_predict`: False
1021
+ - `eval_strategy`: steps
1022
+ - `prediction_loss_only`: True
1023
+ - `per_device_train_batch_size`: 128
1024
+ - `per_device_eval_batch_size`: 128
1025
+ - `per_gpu_train_batch_size`: None
1026
+ - `per_gpu_eval_batch_size`: None
1027
+ - `gradient_accumulation_steps`: 1
1028
+ - `eval_accumulation_steps`: None
1029
+ - `learning_rate`: 5e-05
1030
+ - `weight_decay`: 0.0
1031
+ - `adam_beta1`: 0.9
1032
+ - `adam_beta2`: 0.999
1033
+ - `adam_epsilon`: 1e-08
1034
+ - `max_grad_norm`: 1.0
1035
+ - `num_train_epochs`: 4
1036
+ - `max_steps`: -1
1037
+ - `lr_scheduler_type`: linear
1038
+ - `lr_scheduler_kwargs`: {}
1039
+ - `warmup_ratio`: 0.1
1040
+ - `warmup_steps`: 0
1041
+ - `log_level`: passive
1042
+ - `log_level_replica`: warning
1043
+ - `log_on_each_node`: True
1044
+ - `logging_nan_inf_filter`: True
1045
+ - `save_safetensors`: True
1046
+ - `save_on_each_node`: False
1047
+ - `save_only_model`: False
1048
+ - `restore_callback_states_from_checkpoint`: False
1049
+ - `no_cuda`: False
1050
+ - `use_cpu`: False
1051
+ - `use_mps_device`: False
1052
+ - `seed`: 42
1053
+ - `data_seed`: None
1054
+ - `jit_mode_eval`: False
1055
+ - `use_ipex`: False
1056
+ - `bf16`: True
1057
+ - `fp16`: False
1058
+ - `fp16_opt_level`: O1
1059
+ - `half_precision_backend`: auto
1060
+ - `bf16_full_eval`: False
1061
+ - `fp16_full_eval`: False
1062
+ - `tf32`: None
1063
+ - `local_rank`: 0
1064
+ - `ddp_backend`: None
1065
+ - `tpu_num_cores`: None
1066
+ - `tpu_metrics_debug`: False
1067
+ - `debug`: []
1068
+ - `dataloader_drop_last`: False
1069
+ - `dataloader_num_workers`: 0
1070
+ - `dataloader_prefetch_factor`: None
1071
+ - `past_index`: -1
1072
+ - `disable_tqdm`: False
1073
+ - `remove_unused_columns`: True
1074
+ - `label_names`: None
1075
+ - `load_best_model_at_end`: False
1076
+ - `ignore_data_skip`: False
1077
+ - `fsdp`: []
1078
+ - `fsdp_min_num_params`: 0
1079
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1080
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1081
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1082
+ - `deepspeed`: None
1083
+ - `label_smoothing_factor`: 0.0
1084
+ - `optim`: adamw_torch
1085
+ - `optim_args`: None
1086
+ - `adafactor`: False
1087
+ - `group_by_length`: False
1088
+ - `length_column_name`: length
1089
+ - `ddp_find_unused_parameters`: None
1090
+ - `ddp_bucket_cap_mb`: None
1091
+ - `ddp_broadcast_buffers`: False
1092
+ - `dataloader_pin_memory`: True
1093
+ - `dataloader_persistent_workers`: False
1094
+ - `skip_memory_metrics`: True
1095
+ - `use_legacy_prediction_loop`: False
1096
+ - `push_to_hub`: False
1097
+ - `resume_from_checkpoint`: None
1098
+ - `hub_model_id`: None
1099
+ - `hub_strategy`: every_save
1100
+ - `hub_private_repo`: False
1101
+ - `hub_always_push`: False
1102
+ - `gradient_checkpointing`: False
1103
+ - `gradient_checkpointing_kwargs`: None
1104
+ - `include_inputs_for_metrics`: False
1105
+ - `eval_do_concat_batches`: True
1106
+ - `fp16_backend`: auto
1107
+ - `push_to_hub_model_id`: None
1108
+ - `push_to_hub_organization`: None
1109
+ - `mp_parameters`:
1110
+ - `auto_find_batch_size`: False
1111
+ - `full_determinism`: False
1112
+ - `torchdynamo`: None
1113
+ - `ray_scope`: last
1114
+ - `ddp_timeout`: 1800
1115
+ - `torch_compile`: False
1116
+ - `torch_compile_backend`: None
1117
+ - `torch_compile_mode`: None
1118
+ - `dispatch_batches`: None
1119
+ - `split_batches`: None
1120
+ - `include_tokens_per_second`: False
1121
+ - `include_num_input_tokens_seen`: False
1122
+ - `neftune_noise_alpha`: None
1123
+ - `optim_target_modules`: None
1124
+ - `batch_eval_metrics`: False
1125
+ - `batch_sampler`: batch_sampler
1126
+ - `multi_dataset_batch_sampler`: proportional
1127
+
1128
+ </details>
1129
+
1130
+ ### Training Logs
1131
+ | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-16_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-32_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-16_spearman_cosine | sts-test-256_spearman_cosine | sts-test-32_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
1132
+ |:------:|:----:|:-------------:|:-------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
1133
+ | 2.2222 | 100 | 60.4066 | 60.8718 | 0.8634 | 0.7953 | 0.8685 | 0.8338 | 0.8709 | 0.8541 | 0.8718 | - | - | - | - | - | - | - |
1134
+ | 4.0 | 180 | - | - | - | - | - | - | - | - | - | 0.8376 | 0.7811 | 0.8415 | 0.8132 | 0.8480 | 0.8292 | 0.8474 |
1135
+
1136
+
1137
+ ### Framework Versions
1138
+ - Python: 3.10.12
1139
+ - Sentence Transformers: 3.0.0
1140
+ - Transformers: 4.41.1
1141
+ - PyTorch: 2.3.0+cu121
1142
+ - Accelerate: 0.30.1
1143
+ - Datasets: 2.19.1
1144
+ - Tokenizers: 0.19.1
1145
+
1146
+ ## Citation
1147
+
1148
+ ### BibTeX
1149
+
1150
+ #### Sentence Transformers
1151
+ ```bibtex
1152
+ @inproceedings{reimers-2019-sentence-bert,
1153
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1154
+ author = "Reimers, Nils and Gurevych, Iryna",
1155
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1156
+ month = "11",
1157
+ year = "2019",
1158
+ publisher = "Association for Computational Linguistics",
1159
+ url = "https://arxiv.org/abs/1908.10084",
1160
+ }
1161
+ ```
1162
+
1163
+ #### MatryoshkaLoss
1164
+ ```bibtex
1165
+ @misc{kusupati2024matryoshka,
1166
+ title={Matryoshka Representation Learning},
1167
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1168
+ year={2024},
1169
+ eprint={2205.13147},
1170
+ archivePrefix={arXiv},
1171
+ primaryClass={cs.LG}
1172
+ }
1173
+ ```
1174
+
1175
+ #### CoSENTLoss
1176
+ ```bibtex
1177
+ @online{kexuefm-8847,
1178
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
1179
+ author={Su Jianlin},
1180
+ year={2022},
1181
+ month={Jan},
1182
+ url={https://kexue.fm/archives/8847},
1183
+ }
1184
+ ```
1185
+
1186
+ <!--
1187
+ ## Glossary
1188
+
1189
+ *Clearly define terms in order to be accessible across audiences.*
1190
+ -->
1191
+
1192
+ <!--
1193
+ ## Model Card Authors
1194
+
1195
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1196
+ -->
1197
+
1198
+ <!--
1199
+ ## Model Card Contact
1200
+
1201
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1202
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert-base-uncased",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertModel"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "pad_token_id": 0,
17
+ "qa_dropout": 0.1,
18
+ "seq_classif_dropout": 0.2,
19
+ "sinusoidal_pos_embds": false,
20
+ "tie_weights_": true,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "vocab_size": 30522
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06aba0ffaed6543b2727a847faf42f58252a42f2aaf442dbdb84fc02536bcd79
3
+ size 265462608
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_max_length": 512,
49
+ "pad_token": "[PAD]",
50
+ "sep_token": "[SEP]",
51
+ "strip_accents": null,
52
+ "tokenize_chinese_chars": true,
53
+ "tokenizer_class": "DistilBertTokenizer",
54
+ "unk_token": "[UNK]"
55
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff