mrkprc1 commited on
Commit
9edda31
1 Parent(s): 3b828b4

End of training

Browse files
Files changed (4) hide show
  1. README.md +61 -182
  2. config.json +78 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,201 +1,80 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
200
 
 
201
 
 
 
 
 
 
1
  ---
2
+ license: other
3
+ base_model: nvidia/mit-b1
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b1-finetuned-sudoku
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
 
16
+ # segformer-b1-finetuned-sudoku
17
 
18
+ This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the mrkprc1/SudokuBoundaries2 dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.7703
21
+ - Mean Iou: 0.0967
22
+ - Mean Accuracy: 0.1934
23
+ - Overall Accuracy: 0.1934
24
+ - Accuracy Unlabelled: nan
25
+ - Accuracy Sudoku-boundary: 0.1934
26
+ - Iou Unlabelled: 0.0
27
+ - Iou Sudoku-boundary: 0.1934
28
 
29
+ ## Model description
30
 
31
+ More information needed
32
 
33
+ ## Intended uses & limitations
34
 
35
+ More information needed
36
 
37
+ ## Training and evaluation data
38
 
39
+ More information needed
 
 
 
 
 
 
40
 
41
+ ## Training procedure
42
 
43
+ ### Training hyperparameters
44
 
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 6e-05
47
+ - train_batch_size: 2
48
+ - eval_batch_size: 2
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 50
53
 
54
+ ### Training results
55
 
56
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabelled | Accuracy Sudoku-boundary | Iou Unlabelled | Iou Sudoku-boundary |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:------------------------:|:--------------:|:-------------------:|
58
+ | 0.6531 | 3.33 | 20 | 0.7016 | 0.1433 | 0.2867 | 0.2867 | nan | 0.2867 | 0.0 | 0.2867 |
59
+ | 0.7654 | 6.67 | 40 | 0.7142 | 0.3064 | 0.6129 | 0.6129 | nan | 0.6129 | 0.0 | 0.6129 |
60
+ | 0.4761 | 10.0 | 60 | 1.0391 | 0.0002 | 0.0005 | 0.0005 | nan | 0.0005 | 0.0 | 0.0005 |
61
+ | 0.7746 | 13.33 | 80 | 1.7648 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
62
+ | 0.5488 | 16.67 | 100 | 1.2288 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
63
+ | 0.6242 | 20.0 | 120 | 1.5012 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 |
64
+ | 0.5423 | 23.33 | 140 | 0.9650 | 0.0029 | 0.0059 | 0.0059 | nan | 0.0059 | 0.0 | 0.0059 |
65
+ | 0.521 | 26.67 | 160 | 0.8594 | 0.0197 | 0.0393 | 0.0393 | nan | 0.0393 | 0.0 | 0.0393 |
66
+ | 0.5655 | 30.0 | 180 | 0.7950 | 0.0527 | 0.1055 | 0.1055 | nan | 0.1055 | 0.0 | 0.1055 |
67
+ | 0.4229 | 33.33 | 200 | 0.7910 | 0.0982 | 0.1964 | 0.1964 | nan | 0.1964 | 0.0 | 0.1964 |
68
+ | 0.288 | 36.67 | 220 | 0.7591 | 0.1358 | 0.2715 | 0.2715 | nan | 0.2715 | 0.0 | 0.2715 |
69
+ | 0.2002 | 40.0 | 240 | 0.7395 | 0.2414 | 0.4828 | 0.4828 | nan | 0.4828 | 0.0 | 0.4828 |
70
+ | 0.6014 | 43.33 | 260 | 0.7405 | 0.2644 | 0.5289 | 0.5289 | nan | 0.5289 | 0.0 | 0.5289 |
71
+ | 0.4336 | 46.67 | 280 | 0.7423 | 0.1751 | 0.3502 | 0.3502 | nan | 0.3502 | 0.0 | 0.3502 |
72
+ | 0.565 | 50.0 | 300 | 0.7703 | 0.0967 | 0.1934 | 0.1934 | nan | 0.1934 | 0.0 | 0.1934 |
73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
+ ### Framework versions
76
 
77
+ - Transformers 4.37.1
78
+ - Pytorch 2.1.2
79
+ - Datasets 2.16.1
80
+ - Tokenizers 0.15.1
config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b1",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 256,
9
+ "depths": [
10
+ 2,
11
+ 2,
12
+ 2,
13
+ 2
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabelled",
32
+ "1": "sudoku-boundary"
33
+ },
34
+ "image_size": 224,
35
+ "initializer_range": 0.02,
36
+ "label2id": {
37
+ "sudoku-boundary": 1,
38
+ "unlabelled": 0
39
+ },
40
+ "layer_norm_eps": 1e-06,
41
+ "mlp_ratios": [
42
+ 4,
43
+ 4,
44
+ 4,
45
+ 4
46
+ ],
47
+ "model_type": "segformer",
48
+ "num_attention_heads": [
49
+ 1,
50
+ 2,
51
+ 5,
52
+ 8
53
+ ],
54
+ "num_channels": 3,
55
+ "num_encoder_blocks": 4,
56
+ "patch_sizes": [
57
+ 7,
58
+ 3,
59
+ 3,
60
+ 3
61
+ ],
62
+ "reshape_last_stage": true,
63
+ "semantic_loss_ignore_index": 255,
64
+ "sr_ratios": [
65
+ 8,
66
+ 4,
67
+ 2,
68
+ 1
69
+ ],
70
+ "strides": [
71
+ 4,
72
+ 2,
73
+ 2,
74
+ 2
75
+ ],
76
+ "torch_dtype": "float32",
77
+ "transformers_version": "4.37.1"
78
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9c29e50710baf0a8e0df97b9a4baa8c224e5ef280786157072184bf96c8b2f9
3
+ size 54737376
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8fd591cef7cd6ff95f0c315b605899df203453b3ac49935bdffaf7bccdeeaa0
3
+ size 4728