Create handler.py
Browse files- handler.py +41 -0
handler.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
from io import BytesIO
|
3 |
+
from typing import Dict, Any
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from diffusers import StableDiffusionXLPipeline
|
8 |
+
|
9 |
+
|
10 |
+
# helper decoder
|
11 |
+
def decode_base64_image(image_string):
|
12 |
+
base64_image = base64.b64decode(image_string)
|
13 |
+
buffer = BytesIO(base64_image)
|
14 |
+
return Image.open(buffer)
|
15 |
+
|
16 |
+
|
17 |
+
class EndpointHandler:
|
18 |
+
def __init__(self, path=""):
|
19 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained("/repository/roses",
|
20 |
+
torch_dtype=torch.float16, revision="fp16")
|
21 |
+
self.pipe = self.pipe.to("cuda")
|
22 |
+
|
23 |
+
def __call__(self, data: Any) -> Dict[str, str]:
|
24 |
+
"""
|
25 |
+
Return predict value.
|
26 |
+
:param data: A dictionary contains `inputs` and optional `image` field.
|
27 |
+
:return: A dictionary with `image` field contains image in base64.
|
28 |
+
"""
|
29 |
+
prompts = data.pop("inputs", None)
|
30 |
+
encoded_image = data.pop("image", None)
|
31 |
+
init_image = None
|
32 |
+
if encoded_image:
|
33 |
+
init_image = decode_base64_image(encoded_image)
|
34 |
+
init_image.thumbnail((768, 768))
|
35 |
+
|
36 |
+
image = self.pipe(prompts, init_image=init_image).images[0]
|
37 |
+
buffered = BytesIO()
|
38 |
+
image.save(buffered, format="png")
|
39 |
+
img_str = base64.b64encode(buffered.getvalue())
|
40 |
+
|
41 |
+
return {"image": img_str.decode()}
|