mrcmilo commited on
Commit
7b0adef
·
verified ·
1 Parent(s): fe24383

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -12
README.md CHANGED
@@ -3,21 +3,72 @@ tags:
3
  - gguf
4
  - llama.cpp
5
  - unsloth
6
-
 
 
 
 
 
 
 
 
7
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
- # phi3-text2sql-lora : GGUF
 
10
 
11
- This model was finetuned and converted to GGUF format using [Unsloth](https://github.com/unslothai/unsloth).
12
 
13
- **Example usage**:
14
- - For text only LLMs: `./llama.cpp/llama-cli -hf mrcmilo/phi3-text2sql-lora --jinja`
15
- - For multimodal models: `./llama.cpp/llama-mtmd-cli -hf mrcmilo/phi3-text2sql-lora --jinja`
16
 
17
- ## Available Model files:
18
- - `phi-3-mini-4k-instruct.Q5_K.gguf`
19
 
20
- ## Ollama
21
- An Ollama Modelfile is included for easy deployment.
22
- This was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth)
23
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
3
  - gguf
4
  - llama.cpp
5
  - unsloth
6
+ license: mit
7
+ datasets:
8
+ - b-mc2/sql-create-context
9
+ language:
10
+ - en
11
+ metrics:
12
+ - accuracy
13
+ base_model:
14
+ - microsoft/Phi-3-mini-4k-instruct
15
  ---
16
+ This is a specialized **Text-to-SQL** model fine-tuned from the **Microsoft Phi-3-mini-4k-instruct** architecture. It has been optimized using **Unsloth** to provide high-accuracy SQL generation while remaining lightweight enough to run on consumer hardware.
17
+
18
+ ## Key Features
19
+ - **Architecture:** Phi-3-mini (3.8B parameters)
20
+ - **Quantization:** Q4_K_M GGUF & Q5_K_M
21
+ - **Training Technique:** Fine-tuned using Lora with [Unsloth](https://github.com/unslothai/unsloth).
22
+ - **Format:** GGUF (Ready for Ollama, LM Studio, and llama.cpp)
23
+ - **phi-3-mini-4k-instruct.Q4_K_M.gguf**
24
+ - **phi-3-mini-4k-instruct.Q5_K_M.gguf**
25
+
26
+ ## Usage Instructions
27
+
28
+ ### Ollama (Recommended)
29
+ To deploy locally:
30
+
31
+ 1. Download the `.gguf` file.
32
+
33
+ 2. Create the Modelfile with the following instructions
34
+
35
+ ```Dockerfile
36
+ FROM ./phi-3-mini-4k-instruct.Q4_K_M.gguf
37
+
38
+ SYSTEM """You are a specialized SQL assistant. Your goal is to produce valid SQL queries based on the provided schema and question. Output only the SQL code and nothing else."""
39
+
40
+ TEMPLATE """<|system|>
41
+ {{ .System }}<|end|>
42
+ <|user|>
43
+ {{ .Prompt }}<|end|>
44
+ <|assistant|>
45
+ """
46
+
47
+ PARAMETER stop "<|end|>"
48
+ PARAMETER temperature 0.1
49
+ PARAMETER num_ctx 2048
50
+ PARAMETER repeat_penalty 1.2
51
+ ```
52
+
53
+ 3. Run ```ollama create phi3-sql-expert -f Modelfile```
54
+
55
+ 5. Run ```ollama run phi3-sql-expert```
56
+
57
+
58
+ ## Evaluation Data
59
+ The model was fine-tuned on the sql-create-context dataset, focusing on:
60
+
61
+ - Mapping natural language to complex SELECT, WHERE, and JOIN statements.
62
+ - Understanding table schemas provided in the prompt.
63
+ - Maintaining strict SQL syntax.
64
 
65
+ ## Recommended Settings
66
+ Temperature: 0.0 or 0.1 (SQL requires deterministic output).
67
 
68
+ Stop Tokens: Ensure <|end|> is set as a stop sequence to prevent "infinite looping" generation.
69
 
70
+ Context Window: 2048 tokens.
 
 
71
 
72
+ **Model Developer**: [msquared](https://github.com/mrcmilano)
 
73
 
74
+ Base Model: [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)