update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: trashbot
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# trashbot
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the mraottth/all_locations_pooled dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0189
|
20 |
+
- Mean Iou: 0.4050
|
21 |
+
- Mean Accuracy: 0.8101
|
22 |
+
- Overall Accuracy: 0.8101
|
23 |
+
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Trash: 0.8101
|
25 |
+
- Iou Unlabeled: 0.0
|
26 |
+
- Iou Trash: 0.8101
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 6e-05
|
46 |
+
- train_batch_size: 3
|
47 |
+
- eval_batch_size: 3
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Trash | Iou Unlabeled | Iou Trash |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:--------------:|:-------------:|:---------:|
|
57 |
+
| 0.0592 | 1.0 | 90 | 0.0387 | 0.3723 | 0.7446 | 0.7446 | nan | 0.7446 | 0.0 | 0.7446 |
|
58 |
+
| 0.0402 | 2.0 | 180 | 0.0281 | 0.4123 | 0.8247 | 0.8247 | nan | 0.8247 | 0.0 | 0.8247 |
|
59 |
+
| 0.0209 | 3.0 | 270 | 0.0246 | 0.3691 | 0.7382 | 0.7382 | nan | 0.7382 | 0.0 | 0.7382 |
|
60 |
+
| 0.0117 | 4.0 | 360 | 0.0210 | 0.3882 | 0.7763 | 0.7763 | nan | 0.7763 | 0.0 | 0.7763 |
|
61 |
+
| 0.019 | 5.0 | 450 | 0.0198 | 0.3822 | 0.7644 | 0.7644 | nan | 0.7644 | 0.0 | 0.7644 |
|
62 |
+
| 0.0445 | 6.0 | 540 | 0.0199 | 0.3771 | 0.7542 | 0.7542 | nan | 0.7542 | 0.0 | 0.7542 |
|
63 |
+
| 0.0195 | 7.0 | 630 | 0.0191 | 0.4177 | 0.8354 | 0.8354 | nan | 0.8354 | 0.0 | 0.8354 |
|
64 |
+
| 0.008 | 8.0 | 720 | 0.0191 | 0.4060 | 0.8119 | 0.8119 | nan | 0.8119 | 0.0 | 0.8119 |
|
65 |
+
| 0.0268 | 9.0 | 810 | 0.0188 | 0.4083 | 0.8166 | 0.8166 | nan | 0.8166 | 0.0 | 0.8166 |
|
66 |
+
| 0.0061 | 10.0 | 900 | 0.0189 | 0.4050 | 0.8101 | 0.8101 | nan | 0.8101 | 0.0 | 0.8101 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.26.0
|
72 |
+
- Pytorch 1.13.1+cu116
|
73 |
+
- Datasets 2.9.0
|
74 |
+
- Tokenizers 0.13.2
|