mradermacher commited on
Commit
6435604
·
verified ·
1 Parent(s): a3b4c54

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -0
README.md CHANGED
@@ -1,6 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/Value4AI/ValueLlama-3-8B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Value4AI/ValueLlama-3-8B
3
+ datasets:
4
+ - allenai/ValuePrism
5
+ - Value4AI/ValueBench
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: llama3
10
+ quantized_by: mradermacher
11
+ tags:
12
+ - llama-factory
13
+ ---
14
+ ## About
15
+
16
  <!-- ### quantize_version: 2 -->
17
  <!-- ### output_tensor_quantised: 1 -->
18
  <!-- ### convert_type: hf -->
19
  <!-- ### vocab_type: -->
20
  <!-- ### tags: -->
21
  static quants of https://huggingface.co/Value4AI/ValueLlama-3-8B
22
+
23
+ <!-- provided-files -->
24
+ weighted/imatrix quants are available at https://huggingface.co/mradermacher/ValueLlama-3-8B-i1-GGUF
25
+ ## Usage
26
+
27
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
28
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
29
+ more details, including on how to concatenate multi-part files.
30
+
31
+ ## Provided Quants
32
+
33
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
34
+
35
+ | Link | Type | Size/GB | Notes |
36
+ |:-----|:-----|--------:|:------|
37
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.Q2_K.gguf) | Q2_K | 3.3 | |
38
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
39
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
40
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
41
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.IQ3_M.gguf) | IQ3_M | 3.9 | |
42
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
43
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
46
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
47
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
48
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
49
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
50
+ | [GGUF](https://huggingface.co/mradermacher/ValueLlama-3-8B-GGUF/resolve/main/ValueLlama-3-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
51
+
52
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
53
+ types (lower is better):
54
+
55
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
56
+
57
+ And here are Artefact2's thoughts on the matter:
58
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
59
+
60
+ ## FAQ / Model Request
61
+
62
+ See https://huggingface.co/mradermacher/model_requests for some answers to
63
+ questions you might have and/or if you want some other model quantized.
64
+
65
+ ## Thanks
66
+
67
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
68
+ me use its servers and providing upgrades to my workstation to enable
69
+ this work in my free time.
70
+
71
+ <!-- end -->