mradermacher commited on
Commit
4dfeb07
1 Parent(s): 0381e4c

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md CHANGED
@@ -1,6 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  static quants of https://huggingface.co/allura-org/Teleut-7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allura-org/Teleut-7b
3
+ datasets:
4
+ - allenai/tulu-3-sft-mixture
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ license: apache-2.0
9
+ quantized_by: mradermacher
10
+ ---
11
+ ## About
12
+
13
  <!-- ### quantize_version: 2 -->
14
  <!-- ### output_tensor_quantised: 1 -->
15
  <!-- ### convert_type: hf -->
16
  <!-- ### vocab_type: -->
17
  <!-- ### tags: nicoboss -->
18
  static quants of https://huggingface.co/allura-org/Teleut-7b
19
+
20
+ <!-- provided-files -->
21
+ weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
22
+ ## Usage
23
+
24
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
25
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
26
+ more details, including on how to concatenate multi-part files.
27
+
28
+ ## Provided Quants
29
+
30
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
31
+
32
+ | Link | Type | Size/GB | Notes |
33
+ |:-----|:-----|--------:|:------|
34
+ | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q2_K.gguf) | Q2_K | 3.1 | |
35
+ | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q3_K_S.gguf) | Q3_K_S | 3.6 | |
36
+ | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q3_K_M.gguf) | Q3_K_M | 3.9 | lower quality |
37
+ | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q3_K_L.gguf) | Q3_K_L | 4.2 | |
38
+ | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q4_K_S.gguf) | Q4_K_S | 4.6 | fast, recommended |
39
+ | [GGUF](https://huggingface.co/mradermacher/Teleut-7b-GGUF/resolve/main/Teleut-7b.Q8_0.gguf) | Q8_0 | 8.2 | fast, best quality |
40
+
41
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
42
+ types (lower is better):
43
+
44
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
45
+
46
+ And here are Artefact2's thoughts on the matter:
47
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
48
+
49
+ ## FAQ / Model Request
50
+
51
+ See https://huggingface.co/mradermacher/model_requests for some answers to
52
+ questions you might have and/or if you want some other model quantized.
53
+
54
+ ## Thanks
55
+
56
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
57
+ me use its servers and providing upgrades to my workstation to enable
58
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
59
+
60
+ <!-- end -->