mradermacher commited on
Commit
2ff1e54
1 Parent(s): d3e02cd

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md CHANGED
@@ -1,6 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/Replete-AI/Llama3-8B-Instruct-Replete-Adapted
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Replete-AI/Llama3-8B-Instruct-Replete-Adapted
3
+ datasets:
4
+ - Replete-AI/code_bagel_hermes-2.5
5
+ - Replete-AI/code_bagel
6
+ - Replete-AI/OpenHermes-2.5-Uncensored
7
+ - teknium/OpenHermes-2.5
8
+ - layoric/tiny-codes-alpaca
9
+ - glaiveai/glaive-code-assistant-v3
10
+ - ajibawa-2023/Code-290k-ShareGPT
11
+ - TIGER-Lab/MathInstruct
12
+ - chargoddard/commitpack-ft-instruct-rated
13
+ - iamturun/code_instructions_120k_alpaca
14
+ - ise-uiuc/Magicoder-Evol-Instruct-110K
15
+ - cognitivecomputations/dolphin-coder
16
+ - nickrosh/Evol-Instruct-Code-80k-v1
17
+ - coseal/CodeUltraFeedback_binarized
18
+ - glaiveai/glaive-function-calling-v2
19
+ - CyberNative/Code_Vulnerability_Security_DPO
20
+ - jondurbin/airoboros-2.2
21
+ - camel-ai
22
+ - lmsys/lmsys-chat-1m
23
+ - CollectiveCognition/chats-data-2023-09-22
24
+ - CoT-Alpaca-GPT4
25
+ - WizardLM/WizardLM_evol_instruct_70k
26
+ - WizardLM/WizardLM_evol_instruct_V2_196k
27
+ - teknium/GPT4-LLM-Cleaned
28
+ - GPTeacher
29
+ - OpenGPT
30
+ - meta-math/MetaMathQA
31
+ - Open-Orca/SlimOrca
32
+ - garage-bAInd/Open-Platypus
33
+ - anon8231489123/ShareGPT_Vicuna_unfiltered
34
+ - Unnatural-Instructions-GPT4
35
+ language:
36
+ - en
37
+ library_name: transformers
38
+ license: other
39
+ license_link: https://llama.meta.com/llama3/license/
40
+ license_name: llama-3
41
+ quantized_by: mradermacher
42
+ tags:
43
+ - text-generation-inference
44
+ - transformers
45
+ - unsloth
46
+ - llama
47
+ ---
48
+ ## About
49
+
50
  <!-- ### quantize_version: 2 -->
51
  <!-- ### output_tensor_quantised: 1 -->
52
  <!-- ### convert_type: hf -->
53
  <!-- ### vocab_type: -->
54
  <!-- ### tags: nicoboss -->
55
  weighted/imatrix quants of https://huggingface.co/Replete-AI/Llama3-8B-Instruct-Replete-Adapted
56
+
57
+ <!-- provided-files -->
58
+ static quants are available at https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-GGUF
59
+ ## Usage
60
+
61
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
62
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
63
+ more details, including on how to concatenate multi-part files.
64
+
65
+ ## Provided Quants
66
+
67
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
68
+
69
+ | Link | Type | Size/GB | Notes |
70
+ |:-----|:-----|--------:|:------|
71
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ1_S.gguf) | i1-IQ1_S | 2.1 | for the desperate |
72
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ1_M.gguf) | i1-IQ1_M | 2.3 | mostly desperate |
73
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 2.5 | |
74
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ2_XS.gguf) | i1-IQ2_XS | 2.7 | |
75
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ2_S.gguf) | i1-IQ2_S | 2.9 | |
76
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ2_M.gguf) | i1-IQ2_M | 3.0 | |
77
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-Q2_K.gguf) | i1-Q2_K | 3.3 | IQ3_XXS probably better |
78
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 3.4 | lower quality |
79
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ3_XS.gguf) | i1-IQ3_XS | 3.6 | |
80
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-Q3_K_S.gguf) | i1-Q3_K_S | 3.8 | IQ3_XS probably better |
81
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ3_S.gguf) | i1-IQ3_S | 3.8 | beats Q3_K* |
82
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ3_M.gguf) | i1-IQ3_M | 3.9 | |
83
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-Q3_K_M.gguf) | i1-Q3_K_M | 4.1 | IQ3_S probably better |
84
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-Q3_K_L.gguf) | i1-Q3_K_L | 4.4 | IQ3_M probably better |
85
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-IQ4_XS.gguf) | i1-IQ4_XS | 4.5 | |
86
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-Q4_0.gguf) | i1-Q4_0 | 4.8 | fast, low quality |
87
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-Q4_K_S.gguf) | i1-Q4_K_S | 4.8 | optimal size/speed/quality |
88
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-Q4_K_M.gguf) | i1-Q4_K_M | 5.0 | fast, recommended |
89
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-Q5_K_S.gguf) | i1-Q5_K_S | 5.7 | |
90
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-Q5_K_M.gguf) | i1-Q5_K_M | 5.8 | |
91
+ | [GGUF](https://huggingface.co/mradermacher/Llama3-8B-Instruct-Replete-Adapted-i1-GGUF/resolve/main/Llama3-8B-Instruct-Replete-Adapted.i1-Q6_K.gguf) | i1-Q6_K | 6.7 | practically like static Q6_K |
92
+
93
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
94
+ types (lower is better):
95
+
96
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
97
+
98
+ And here are Artefact2's thoughts on the matter:
99
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
100
+
101
+ ## FAQ / Model Request
102
+
103
+ See https://huggingface.co/mradermacher/model_requests for some answers to
104
+ questions you might have and/or if you want some other model quantized.
105
+
106
+ ## Thanks
107
+
108
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
109
+ me use its servers and providing upgrades to my workstation to enable
110
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his hardware for calculating the imatrix for these quants.
111
+
112
+ <!-- end -->