Transformers
GGUF
English
code
Inference Endpoints
mradermacher commited on
Commit
c18931b
1 Parent(s): 0622bcb

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md CHANGED
@@ -1,6 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/wyt2000/InverseCoder-CL-7B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: wyt2000/InverseCoder-CL-7B
3
+ datasets:
4
+ - ise-uiuc/Magicoder-Evol-Instruct-110K
5
+ language:
6
+ - en
7
+ library_name: transformers
8
+ license: llama2
9
+ license_link: LICENSE
10
+ license_name: deepseek
11
+ quantized_by: mradermacher
12
+ tags:
13
+ - code
14
+ ---
15
+ ## About
16
+
17
  <!-- ### quantize_version: 2 -->
18
  <!-- ### output_tensor_quantised: 1 -->
19
  <!-- ### convert_type: hf -->
20
  <!-- ### vocab_type: -->
21
  <!-- ### tags: -->
22
  static quants of https://huggingface.co/wyt2000/InverseCoder-CL-7B
23
+
24
+ <!-- provided-files -->
25
+ weighted/imatrix quants are available at https://huggingface.co/mradermacher/InverseCoder-CL-7B-i1-GGUF
26
+ ## Usage
27
+
28
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
29
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
30
+ more details, including on how to concatenate multi-part files.
31
+
32
+ ## Provided Quants
33
+
34
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
35
+
36
+ | Link | Type | Size/GB | Notes |
37
+ |:-----|:-----|--------:|:------|
38
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.Q2_K.gguf) | Q2_K | 2.6 | |
39
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.IQ3_XS.gguf) | IQ3_XS | 2.9 | |
40
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.IQ3_S.gguf) | IQ3_S | 3.0 | beats Q3_K* |
41
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.Q3_K_S.gguf) | Q3_K_S | 3.0 | |
42
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.IQ3_M.gguf) | IQ3_M | 3.2 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.Q3_K_M.gguf) | Q3_K_M | 3.4 | lower quality |
44
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.Q3_K_L.gguf) | Q3_K_L | 3.7 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.IQ4_XS.gguf) | IQ4_XS | 3.7 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.Q4_K_S.gguf) | Q4_K_S | 4.0 | fast, recommended |
47
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.Q4_K_M.gguf) | Q4_K_M | 4.2 | fast, recommended |
48
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.Q5_K_S.gguf) | Q5_K_S | 4.8 | |
49
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.Q5_K_M.gguf) | Q5_K_M | 4.9 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.Q6_K.gguf) | Q6_K | 5.6 | very good quality |
51
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.Q8_0.gguf) | Q8_0 | 7.3 | fast, best quality |
52
+ | [GGUF](https://huggingface.co/mradermacher/InverseCoder-CL-7B-GGUF/resolve/main/InverseCoder-CL-7B.f16.gguf) | f16 | 13.6 | 16 bpw, overkill |
53
+
54
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
55
+ types (lower is better):
56
+
57
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
58
+
59
+ And here are Artefact2's thoughts on the matter:
60
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
61
+
62
+ ## FAQ / Model Request
63
+
64
+ See https://huggingface.co/mradermacher/model_requests for some answers to
65
+ questions you might have and/or if you want some other model quantized.
66
+
67
+ ## Thanks
68
+
69
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
70
+ me use its servers and providing upgrades to my workstation to enable
71
+ this work in my free time.
72
+
73
+ <!-- end -->