Update README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
|
|
|
|
3 |
tags:
|
4 |
- sentence-transformers
|
5 |
- feature-extraction
|
@@ -8,10 +10,12 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
# msmarco-distilbert-base-tas-b-mmarco-pt-100k
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
|
|
|
|
15 |
<!--- Describe your model here -->
|
16 |
|
17 |
## Usage (Sentence-Transformers)
|
@@ -28,7 +32,7 @@ Then you can use the model like this:
|
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
@@ -51,8 +55,8 @@ def cls_pooling(model_output, attention_mask):
|
|
51 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
52 |
|
53 |
# Load model from HuggingFace Hub
|
54 |
-
tokenizer = AutoTokenizer.from_pretrained('{
|
55 |
-
model = AutoModel.from_pretrained('{
|
56 |
|
57 |
# Tokenize sentences
|
58 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
1 |
---
|
2 |
pipeline_tag: sentence-similarity
|
3 |
+
language:
|
4 |
+
- 'pt'
|
5 |
tags:
|
6 |
- sentence-transformers
|
7 |
- feature-extraction
|
|
|
10 |
|
11 |
---
|
12 |
|
13 |
+
# mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k
|
14 |
|
15 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
16 |
|
17 |
+
It is a fine-tuning of [sentence-transformers/msmarco-distilbert-base-tas-b](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b) on the first 100k triplets of the Portuguese subset in [unicamp-dl/mmarco](https://huggingface.co/datasets/unicamp-dl/mmarco).
|
18 |
+
|
19 |
<!--- Describe your model here -->
|
20 |
|
21 |
## Usage (Sentence-Transformers)
|
|
|
32 |
from sentence_transformers import SentenceTransformer
|
33 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
34 |
|
35 |
+
model = SentenceTransformer('mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k')
|
36 |
embeddings = model.encode(sentences)
|
37 |
print(embeddings)
|
38 |
```
|
|
|
55 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained('{mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k}')
|
59 |
+
model = AutoModel.from_pretrained('{mpjan/msmarco-distilbert-base-tas-b-mmarco-pt-100k}')
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|