mp-02 commited on
Commit
3dcac16
·
verified ·
1 Parent(s): dd39a08

layoutlmv3-finetuned-cord

Browse files
Files changed (1) hide show
  1. README.md +19 -14
README.md CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.1816
25
  - Precision: 0.9617
26
  - Recall: 0.9752
27
  - F1: 0.9684
28
- - Accuracy: 0.9686
29
 
30
  ## Model description
31
 
@@ -54,18 +54,23 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
- |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
- | 1.3286 | 1.875 | 150 | 0.4894 | 0.8378 | 0.8905 | 0.8634 | 0.8829 |
60
- | 0.3358 | 3.75 | 300 | 0.2462 | 0.9264 | 0.9573 | 0.9416 | 0.9508 |
61
- | 0.1629 | 5.625 | 450 | 0.1974 | 0.9422 | 0.9620 | 0.9520 | 0.9588 |
62
- | 0.0948 | 7.5 | 600 | 0.1913 | 0.9534 | 0.9689 | 0.9611 | 0.9618 |
63
- | 0.058 | 9.375 | 750 | 0.1741 | 0.9543 | 0.9720 | 0.9631 | 0.9660 |
64
- | 0.0409 | 11.25 | 900 | 0.1738 | 0.9573 | 0.9759 | 0.9666 | 0.9694 |
65
- | 0.0285 | 13.125 | 1050 | 0.1981 | 0.9571 | 0.9697 | 0.9634 | 0.9635 |
66
- | 0.0256 | 15.0 | 1200 | 0.1863 | 0.9580 | 0.9728 | 0.9653 | 0.9665 |
67
- | 0.0192 | 16.875 | 1350 | 0.1802 | 0.9640 | 0.9767 | 0.9703 | 0.9703 |
68
- | 0.0143 | 18.75 | 1500 | 0.1816 | 0.9617 | 0.9752 | 0.9684 | 0.9686 |
 
 
 
 
 
69
 
70
 
71
  ### Framework versions
 
21
 
22
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.1756
25
  - Precision: 0.9617
26
  - Recall: 0.9752
27
  - F1: 0.9684
28
+ - Accuracy: 0.9707
29
 
30
  ## Model description
31
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
59
+ | 0.8575 | 1.25 | 100 | 0.7617 | 0.7943 | 0.8455 | 0.8191 | 0.8345 |
60
+ | 0.411 | 2.5 | 200 | 0.3537 | 0.8834 | 0.9293 | 0.9058 | 0.9198 |
61
+ | 0.2338 | 3.75 | 300 | 0.2471 | 0.9396 | 0.9666 | 0.9529 | 0.9546 |
62
+ | 0.175 | 5.0 | 400 | 0.1970 | 0.9460 | 0.9666 | 0.9562 | 0.9605 |
63
+ | 0.0761 | 6.25 | 500 | 0.1824 | 0.9548 | 0.9674 | 0.9610 | 0.9648 |
64
+ | 0.07 | 7.5 | 600 | 0.1839 | 0.9498 | 0.9697 | 0.9597 | 0.9660 |
65
+ | 0.1061 | 8.75 | 700 | 0.1685 | 0.9616 | 0.9728 | 0.9672 | 0.9699 |
66
+ | 0.0197 | 10.0 | 800 | 0.1704 | 0.9586 | 0.9697 | 0.9641 | 0.9665 |
67
+ | 0.0238 | 11.25 | 900 | 0.1793 | 0.9608 | 0.9705 | 0.9656 | 0.9656 |
68
+ | 0.0149 | 12.5 | 1000 | 0.2080 | 0.9654 | 0.9744 | 0.9699 | 0.9652 |
69
+ | 0.0208 | 13.75 | 1100 | 0.1708 | 0.9602 | 0.9728 | 0.9664 | 0.9699 |
70
+ | 0.0253 | 15.0 | 1200 | 0.1783 | 0.9617 | 0.9744 | 0.9680 | 0.9699 |
71
+ | 0.0213 | 16.25 | 1300 | 0.1754 | 0.9655 | 0.9767 | 0.9711 | 0.9724 |
72
+ | 0.0079 | 17.5 | 1400 | 0.1715 | 0.9670 | 0.9775 | 0.9722 | 0.9728 |
73
+ | 0.0226 | 18.75 | 1500 | 0.1756 | 0.9617 | 0.9752 | 0.9684 | 0.9707 |
74
 
75
 
76
  ### Framework versions