End of training
Browse files- README.md +102 -196
- config.json +78 -0
- model.safetensors +3 -0
- runs/Aug01_03-05-39_d341e027d780/events.out.tfevents.1722481561.d341e027d780.23.0 +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,105 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
-
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/segformer-b2-finetuned-ade-512-512
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
metrics:
|
9 |
+
- precision
|
10 |
+
model-index:
|
11 |
+
- name: segformer_b2_finetuned_segment_pv_p100_4batch
|
12 |
+
results: []
|
13 |
---
|
14 |
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mouadn773/segformer-pv-4batches/runs/a86baba8)
|
19 |
+
# segformer_b2_finetuned_segment_pv_p100_4batch
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [nvidia/segformer-b2-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b2-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0090
|
24 |
+
- Mean Iou: 0.8765
|
25 |
+
- Precision: 0.9192
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 4e-05
|
45 |
+
- train_batch_size: 4
|
46 |
+
- eval_batch_size: 4
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- num_epochs: 40
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|
|
58 |
+
| 0.5015 | 1.0 | 917 | 0.1494 | 0.5660 | 0.6026 |
|
59 |
+
| 0.0714 | 2.0 | 1834 | 0.0237 | 0.7528 | 0.7988 |
|
60 |
+
| 0.0171 | 3.0 | 2751 | 0.0101 | 0.7978 | 0.8930 |
|
61 |
+
| 0.0087 | 4.0 | 3668 | 0.0072 | 0.8260 | 0.8534 |
|
62 |
+
| 0.0058 | 5.0 | 4585 | 0.0067 | 0.8418 | 0.8981 |
|
63 |
+
| 0.0046 | 6.0 | 5502 | 0.0056 | 0.8457 | 0.8971 |
|
64 |
+
| 0.0038 | 7.0 | 6419 | 0.0056 | 0.8530 | 0.8770 |
|
65 |
+
| 0.0034 | 8.0 | 7336 | 0.0056 | 0.8525 | 0.8978 |
|
66 |
+
| 0.003 | 9.0 | 8253 | 0.0052 | 0.8643 | 0.9063 |
|
67 |
+
| 0.0028 | 10.0 | 9170 | 0.0054 | 0.8641 | 0.9010 |
|
68 |
+
| 0.0027 | 11.0 | 10087 | 0.0065 | 0.8489 | 0.9236 |
|
69 |
+
| 0.0025 | 12.0 | 11004 | 0.0066 | 0.8432 | 0.9006 |
|
70 |
+
| 0.0024 | 13.0 | 11921 | 0.0055 | 0.8637 | 0.9242 |
|
71 |
+
| 0.0022 | 14.0 | 12838 | 0.0054 | 0.8679 | 0.9104 |
|
72 |
+
| 0.0024 | 15.0 | 13755 | 0.0055 | 0.8719 | 0.9171 |
|
73 |
+
| 0.0019 | 16.0 | 14672 | 0.0055 | 0.8746 | 0.9219 |
|
74 |
+
| 0.0019 | 17.0 | 15589 | 0.0056 | 0.8668 | 0.9062 |
|
75 |
+
| 0.0018 | 18.0 | 16506 | 0.0063 | 0.8703 | 0.9121 |
|
76 |
+
| 0.0017 | 19.0 | 17423 | 0.0062 | 0.8694 | 0.9084 |
|
77 |
+
| 0.0016 | 20.0 | 18340 | 0.0063 | 0.8719 | 0.9133 |
|
78 |
+
| 0.0015 | 21.0 | 19257 | 0.0065 | 0.8734 | 0.9159 |
|
79 |
+
| 0.0014 | 22.0 | 20174 | 0.0068 | 0.8730 | 0.9155 |
|
80 |
+
| 0.0015 | 23.0 | 21091 | 0.0069 | 0.8719 | 0.9228 |
|
81 |
+
| 0.0013 | 24.0 | 22008 | 0.0069 | 0.8745 | 0.9162 |
|
82 |
+
| 0.0013 | 25.0 | 22925 | 0.0069 | 0.8757 | 0.9196 |
|
83 |
+
| 0.0012 | 26.0 | 23842 | 0.0075 | 0.8747 | 0.9138 |
|
84 |
+
| 0.0012 | 27.0 | 24759 | 0.0074 | 0.8750 | 0.9159 |
|
85 |
+
| 0.0012 | 28.0 | 25676 | 0.0074 | 0.8755 | 0.9213 |
|
86 |
+
| 0.0011 | 29.0 | 26593 | 0.0081 | 0.8762 | 0.9154 |
|
87 |
+
| 0.0011 | 30.0 | 27510 | 0.0083 | 0.8754 | 0.9162 |
|
88 |
+
| 0.0011 | 31.0 | 28427 | 0.0084 | 0.8753 | 0.9168 |
|
89 |
+
| 0.001 | 32.0 | 29344 | 0.0083 | 0.8754 | 0.9202 |
|
90 |
+
| 0.001 | 33.0 | 30261 | 0.0085 | 0.8758 | 0.9174 |
|
91 |
+
| 0.001 | 34.0 | 31178 | 0.0085 | 0.8758 | 0.9208 |
|
92 |
+
| 0.0009 | 35.0 | 32095 | 0.0088 | 0.8763 | 0.9191 |
|
93 |
+
| 0.0009 | 36.0 | 33012 | 0.0090 | 0.8756 | 0.9172 |
|
94 |
+
| 0.0009 | 37.0 | 33929 | 0.0090 | 0.8760 | 0.9181 |
|
95 |
+
| 0.0009 | 38.0 | 34846 | 0.0087 | 0.8764 | 0.9195 |
|
96 |
+
| 0.0009 | 39.0 | 35763 | 0.0090 | 0.8763 | 0.9184 |
|
97 |
+
| 0.0009 | 40.0 | 36680 | 0.0090 | 0.8765 | 0.9192 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.42.3
|
103 |
+
- Pytorch 2.1.2
|
104 |
+
- Datasets 2.20.0
|
105 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/segformer-b2-finetuned-ade-512-512",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
4,
|
12 |
+
6,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "PV"
|
33 |
+
},
|
34 |
+
"image_size": 224,
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"label2id": {
|
37 |
+
"PV": 1,
|
38 |
+
"unlabeled": 0
|
39 |
+
},
|
40 |
+
"layer_norm_eps": 1e-06,
|
41 |
+
"mlp_ratios": [
|
42 |
+
4,
|
43 |
+
4,
|
44 |
+
4,
|
45 |
+
4
|
46 |
+
],
|
47 |
+
"model_type": "segformer",
|
48 |
+
"num_attention_heads": [
|
49 |
+
1,
|
50 |
+
2,
|
51 |
+
5,
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"num_channels": 3,
|
55 |
+
"num_encoder_blocks": 4,
|
56 |
+
"patch_sizes": [
|
57 |
+
7,
|
58 |
+
3,
|
59 |
+
3,
|
60 |
+
3
|
61 |
+
],
|
62 |
+
"reshape_last_stage": true,
|
63 |
+
"semantic_loss_ignore_index": 255,
|
64 |
+
"sr_ratios": [
|
65 |
+
8,
|
66 |
+
4,
|
67 |
+
2,
|
68 |
+
1
|
69 |
+
],
|
70 |
+
"strides": [
|
71 |
+
4,
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2
|
75 |
+
],
|
76 |
+
"torch_dtype": "float32",
|
77 |
+
"transformers_version": "4.42.3"
|
78 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d256e697c8f47e5e951e63d2c27dc43ae283bd7afa46afa401b43e0d89c5b3d
|
3 |
+
size 109444016
|
runs/Aug01_03-05-39_d341e027d780/events.out.tfevents.1722481561.d341e027d780.23.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00ee073d8865105aa5437107611acf88a72d16c85832602ebc0f9249ea57bac4
|
3 |
+
size 29547
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ce8b370378ea05fd0dde012a3d564aac778bafbfd584c17103c46d399a12c80
|
3 |
+
size 5176
|