|
import streamlit as st |
|
import os |
|
import torch |
|
|
|
from torch.utils.data import DataLoader |
|
from config import get_config_universal |
|
from dataset import DataSet |
|
from datasetbuilder import DataSetBuilder |
|
from test import Test |
|
from visualization.steamlit_plot import plot_kinematic_predictions |
|
|
|
dataset_name = 'camargo' |
|
config = get_config_universal(dataset_name) |
|
|
|
|
|
|
|
sensor_options = {'Thigh & Shank & Foot': ['foot', 'shank', 'thigh'], |
|
'Thigh & Shank': ['thigh', 'shank'], |
|
'Thigh & Foot': ['thigh', 'foot'], |
|
'Shank & Foot': ['shank', 'foot'], |
|
'Thigh': ['thigh'], |
|
'Shank': ['shank'], |
|
'Foot': ['foot']} |
|
|
|
@st.cache |
|
def fetch_data(config): |
|
dataset_handler = DataSet(config, load_dataset=True) |
|
kihadataset_train, kihadataset_test = dataset_handler.run_dataset_split_loop() |
|
kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels'] = dataset_handler.run_segmentation( |
|
kihadataset_train['x'], |
|
kihadataset_train['y'], kihadataset_train['labels']) |
|
kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels'] = dataset_handler.run_segmentation( |
|
kihadataset_test['x'], |
|
kihadataset_test['y'], kihadataset_test['labels']) |
|
train_dataset = DataSetBuilder(kihadataset_train['x'], kihadataset_train['y'], kihadataset_train['labels'], |
|
transform_method=config['data_transformer'], scaler=None, noise=None) |
|
test_dataset = DataSetBuilder(kihadataset_test['x'], kihadataset_test['y'], kihadataset_test['labels'], |
|
transform_method=config['data_transformer'], scaler=train_dataset.scaler, |
|
noise=None) |
|
test_dataloader = DataLoader(dataset=test_dataset, batch_size=config['batch_size'], shuffle=False) |
|
return test_dataloader, kihadataset_test |
|
|
|
|
|
def fetch_model(sensor_name, model_name): |
|
device = torch.device('cpu') |
|
model_names = {'CNNLSTM':'hernandez2021cnnlstm', 'BiLSTM':'bilstm', 'BioMAT': 'transformertsai'} |
|
sensor_names = {'Thigh & Shank & Foot':'thighshankfoot', |
|
'Thigh & Shank':'thighshank', |
|
'Thigh & Foot':'thighfoot', |
|
'Shank & Foot':'shankfoot', |
|
'Thigh':'thigh', |
|
'Shank':'shank', |
|
'Foot':'foot'} |
|
if sensor_names[sensor_name]=='thighshankfoot': |
|
model_file = model_names[model_name] + '_g1g2rardsasd_g1g2rardsasd.pt' |
|
else: |
|
model_file = sensor_names[sensor_name] + '_' + model_names[model_name]+'_g1g2rardsasd_g1g2rardsasd.pt' |
|
|
|
st.write(model_file) |
|
model = torch.load(os.path.join('./caches/trained_model/v05', model_file)) |
|
return model |
|
|
|
|
|
def fetch_predictions(model): |
|
test_handler = Test() |
|
y_pred, y_true, loss = test_handler.run_testing(config, model, test_dataloader=test_dataloader) |
|
y_true = y_true.detach().cpu().clone().numpy() |
|
y_pred = y_pred.detach().cpu().clone().numpy() |
|
return y_pred, y_true, loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.set_page_config(layout="wide") |
|
|
|
|
|
st.title('BioMAT:Biomechanical Multi-Activity Transformer Model for Joint Kinematic Prediction From IMUs') |
|
|
|
|
|
st.sidebar.title('Sensor Configuration') |
|
selected_sensor = st.sidebar.selectbox('Pick one', ['Thigh & Shank & Foot', |
|
'Thigh & Shank', |
|
'Thigh & Foot', |
|
'Shank & Foot', |
|
'Thigh', |
|
'Shank', |
|
'Foot']) |
|
|
|
config['selected_sensors'] = sensor_options[selected_sensor] |
|
print(config) |
|
|
|
st.sidebar.title('Model Configuration') |
|
selected_model = st.sidebar.selectbox('Pick one', ['CNNLSTM', |
|
'BiLSTM', |
|
'BioMAT']) |
|
|
|
st.sidebar.title('Subject') |
|
selected_subject = st.sidebar.slider('Pick a Subject Number', min_value=23, max_value=25, step=1) |
|
|
|
st.sidebar.title('Activity') |
|
selected_activities = st.sidebar.multiselect('Pick Output Activities', |
|
['LevelGround Walking', 'Ramp Ascent', 'Ramp Descent', 'Stair Ascent', 'Stair Descent']) |
|
|
|
index_to_plot = st.sidebar.number_input('Enter a number between 0 and 5', min_value=0, max_value=5) |
|
|
|
if st.sidebar.button('Predict'): |
|
with st.spinner('Data is loading...'): |
|
test_dataloader, kihadataset_test = fetch_data(config) |
|
st.success('Data is loaded!') |
|
with st.spinner('Model is loading...'): |
|
model = fetch_model(selected_sensor, selected_model) |
|
st.success('Model is loaded!') |
|
with st.spinner('Prediction ...'): |
|
y_pred, y_true, loss = fetch_predictions(model) |
|
st.success('Prediction is Completed!') |
|
st.write('plot ...') |
|
subject = 'AB' + str(selected_subject) |
|
fig = plot_kinematic_predictions(y_true, y_pred, kihadataset_test['labels'], subject, |
|
selected_activities=selected_activities, selected_index_to_plot=index_to_plot) |
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
|
|
|
|
|
|
|