morpheushoc commited on
Commit
f3f535c
·
verified ·
1 Parent(s): 9ced7ad

Upload InternVideo2_Classification_test

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InternVideo2_Classification_test"
4
+ ],
5
+ "auto_map": {
6
+ "AutoModel": "modeling_videochat2_classification.InternVideo2_Classification_test"
7
+ },
8
+ "bridge": {
9
+ "extra_num_query_token": 64,
10
+ "name": "qformer",
11
+ "num_query_token": 32,
12
+ "qformer_attention_probs_dropout_prob": 0.1,
13
+ "qformer_drop_path_rate": 0.2,
14
+ "qformer_hidden_dropout_prob": 0.1
15
+ },
16
+ "freeze_bridge": false,
17
+ "freeze_llm": false,
18
+ "freeze_vision_encoder": false,
19
+ "llm": {
20
+ "lora_alpha": 32,
21
+ "lora_dropout": 0.1,
22
+ "lora_r": 16,
23
+ "name": "mistral_7b",
24
+ "pretrained_llm_path": "mistralai/Mistral-7B-Instruct-v0.3",
25
+ "use_lora": true
26
+ },
27
+ "loss": {
28
+ "use_vision_regression_loss": false
29
+ },
30
+ "model_config": {},
31
+ "model_type": "InternVideo2_Classification_test",
32
+ "pretrained_paths": {},
33
+ "torch_dtype": "float32",
34
+ "transformers_version": "4.46.1",
35
+ "use_flash_attention": true,
36
+ "vision_encoder": {
37
+ "checkpoint_num": 48,
38
+ "d_model": 1408,
39
+ "encoder_embed_dim": 1408,
40
+ "img_size": 224,
41
+ "name": "internvideo2-1B",
42
+ "num_frames": 8,
43
+ "origin_num_frames": 4,
44
+ "patch_size": 14,
45
+ "pretrained": null,
46
+ "sep_image_video_pos_embed": true,
47
+ "tubelet_size": 1,
48
+ "use_checkpoint": true,
49
+ "vit_add_ln": true,
50
+ "x_vis_only": true,
51
+ "x_vis_return_idx": -2
52
+ }
53
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c2e92eec0623bf8e345a2310b4baff5fd2ecb0897a3b6eb94e5de89951a2de3c
3
+ size 42488
modeling_videochat2_classification.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ import torch
4
+ import torch.utils.checkpoint
5
+ from torch import nn
6
+ from torch.cuda.amp import autocast as autocast
7
+ from typing import Optional
8
+ from modeling_internvideo2_vit import pretrain_internvideo2_giant_patch14_224_clean
9
+ from modeling_qformer import build_qformer
10
+ # from .flash_attention_class import FlashAttention
11
+ from model_config import VideoChat2Config
12
+
13
+ from transformers import AutoTokenizer,AutoModel, AutoConfig, PreTrainedModel, PretrainedConfig
14
+ import logging
15
+ logger = logging.getLogger(__name__)
16
+
17
+ token = os.environ['HF_TOKEN']
18
+
19
+ IMG_TOKEN = "[<IMG_PLH>]"
20
+ VID_TOKEN = "[<VID_PLH>]"
21
+
22
+ DEFAULT_PAD_TOKEN = "[PAD]"
23
+ DEFAULT_BOS_TOKEN = '<s>'
24
+ DEFAULT_EOS_TOKEN = '</s>'
25
+ DEFAULT_UNK_TOKEN = "<unk>"
26
+
27
+ DEFAULT_IMAGE_TOKEN = "[IMAGETOKEN]"
28
+ DEFAULT_VIDEO_TOKEN = "[VIDEOTOKEN]"
29
+
30
+ DEFAULT_IMG_PLACEHOLDER = "[<IMG_PLH>]"
31
+ DEFAULT_VID_PLACEHOLDER = "[<VID_PLH>]"
32
+
33
+
34
+
35
+ def disabled_train(self, mode=True):
36
+ """Overwrite model.train with this function to make sure train/eval mode
37
+ does not change anymore."""
38
+ return self
39
+
40
+
41
+ def freeze_module(module):
42
+ for _, param in module.named_parameters():
43
+ param.requires_grad = False
44
+ module = module.eval()
45
+ module.train = disabled_train
46
+ return module
47
+
48
+
49
+ class InternVideo2_Classification(PreTrainedModel):
50
+ config_class = VideoChat2Config
51
+ def __init__(self, config):
52
+ self.model_config = config.model_config
53
+ # config.model_config = None
54
+ super().__init__(config)
55
+ self.build_vision_encoder()
56
+ self.build_llm()
57
+ self.build_bridge()
58
+ # NOTE place it after freeze llm
59
+ for n, p in self.named_parameters():
60
+ if p.requires_grad:
61
+ logger.info(f'{n} requires_grad')
62
+
63
+
64
+ def forward(
65
+ self,
66
+ input_ids: torch.LongTensor = None,
67
+ attention_mask: Optional[torch.Tensor] = None,
68
+ labels: Optional[torch.LongTensor] = None,
69
+ image: Optional[torch.Tensor] = None,
70
+ video: Optional[torch.Tensor] = None,
71
+ instruction = None,
72
+ video_idx = None,
73
+ image_idx = None,
74
+ ):
75
+ if self.use_vision_regression_loss:
76
+ text_embeds, visual, visual_idx = self.pad_text_embeds(input_ids=input_ids, image=image,video=video, return_visual=True, video_idx=video_idx, image_idx=image_idx, instruction = instruction)
77
+ else:
78
+ text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, return_visual=False, video_idx=video_idx, image_idx=image_idx, instruction = instruction)
79
+
80
+ outputs = self.lm(
81
+ inputs_embeds=text_embeds,
82
+ attention_mask=attention_mask,
83
+ labels=labels,
84
+ output_hidden_states=True,
85
+ return_dict=True,
86
+ )
87
+
88
+ return outputs
89
+
90
+
91
+ def build_vision_encoder(self):
92
+ # load pretrained internvideo2-1b here, simplified as it receives no args
93
+ # note that we haven't load the internvideo pretrained version
94
+ if 'internvideo2' in self.model_config.vision_encoder.name.lower():
95
+ encoder_name = self.model_config.vision_encoder.name
96
+ logger.info(f"Build vision_encoder: {encoder_name}")
97
+ if encoder_name == 'internvideo2-1B':
98
+ self.vision_encoder = pretrain_internvideo2_giant_patch14_224_clean(self.model_config)
99
+ else:
100
+ raise ValueError(f"Not implemented: {encoder_name}")
101
+ else:
102
+ raise NotImplementedError(self.model_config.vision_encoder.name)
103
+
104
+ if self.model_config.vision_encoder.vit_add_ln:
105
+ self.vision_layernorm = nn.LayerNorm(self.model_config.vision_encoder.encoder_embed_dim, eps=1e-12)
106
+ else:
107
+ self.vision_layernorm = nn.Identity()
108
+
109
+ self.freeze_vision_encoder = self.model_config.get("freeze_vision_encoder", False)
110
+
111
+ if self.freeze_vision_encoder:
112
+ logger.info("freeze vision encoder")
113
+ freeze_module(self.vision_encoder)
114
+ freeze_module(self.vision_layernorm)
115
+
116
+
117
+ def build_bridge(self):
118
+ # ViT to LM: 1792 -> 6656 NOTE 768 is qformer dim
119
+ self.project_up = nn.Linear(768, self.lm.config.hidden_size) # whether bias is needed?
120
+ # LM to ViT: 6656 -> 1792
121
+ self.project_down = nn.Linear(self.lm.config.hidden_size, 768)
122
+
123
+ if 'qformer' in self.model_config.bridge.name.lower():
124
+ from transformers import BertTokenizer
125
+ self.qformer_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", truncation_side="left")
126
+ self.qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"})
127
+ self.qformer_tokenizer.padding_side = "left"
128
+ if self.model_config.bridge.name == 'qformer':
129
+ self.qformer, self.query_tokens = build_qformer(
130
+ self.model_config.bridge.num_query_token, self.model_config.vision_encoder.encoder_embed_dim,
131
+ qformer_hidden_dropout_prob=self.model_config.bridge.qformer_hidden_dropout_prob,
132
+ qformer_attention_probs_dropout_prob=self.model_config.bridge.qformer_attention_probs_dropout_prob,
133
+ qformer_drop_path_rate=self.model_config.bridge.qformer_drop_path_rate,
134
+ )
135
+ self.qformer.resize_token_embeddings(len(self.qformer_tokenizer))
136
+ self.qformer.cls = None
137
+ self.extra_num_query_token = self.model_config.bridge.extra_num_query_token
138
+ if self.model_config.bridge.extra_num_query_token > 0:
139
+ logger.info(f"Add extra {self.model_config.bridge.extra_num_query_token} tokens in QFormer")
140
+ self.extra_query_tokens = nn.Parameter(
141
+ torch.zeros(1, self.model_config.bridge.extra_num_query_token, self.query_tokens.shape[-1])
142
+ )
143
+
144
+ self.freeze_bridge = self.model_config.get("freeze_bridge", False)
145
+ if self.freeze_bridge:
146
+ logger.info("freeze bridge")
147
+ freeze_module(self.qformer)
148
+ self.query_tokens.requires_grad = False
149
+
150
+
151
+ def build_llm(self):
152
+ self.lm_name = self.model_config.llm.name
153
+ if self.model_config.llm.name == 'mistral_7b':
154
+ from transformers import AutoModelForSequenceClassification
155
+ config = AutoConfig.from_pretrained(
156
+ self.model_config.llm.pretrained_llm_path,
157
+ torch_dtype=torch.bfloat16,
158
+ token=token,
159
+ # attn_implementation="flash_attention_2",
160
+ )
161
+ self.lm = AutoModelForSequenceClassification.from_config(config)
162
+ elif self.model_config.llm.name == 'internlm_20b':
163
+ from transformers import AutoModelForSequenceClassification
164
+ self.lm = AutoModelForSequenceClassification.from_pretrained(
165
+ self.model_config.llm.pretrained_llm_path,
166
+ torch_dtype=torch.bfloat16,
167
+ trust_remote_code=True,
168
+ )
169
+ self.lm.gradient_checkpointing = True
170
+ self.lm._set_gradient_checkpointing()
171
+ elif self.model_config.llm.name == 'internlm2_5_7b':
172
+ from transformers import AutoModelForSequenceClassification
173
+ self.lm = AutoModelForSequenceClassification.from_pretrained(
174
+ self.model_config.llm.pretrained_llm_path,
175
+ torch_dtype=torch.bfloat16,
176
+ trust_remote_code=True,
177
+ local_files_only=True,
178
+ )
179
+ else:
180
+ raise NotImplementedError(self.model_config.llm.name)
181
+
182
+ self.freeze_llm = self.model_config.get("freeze_llm", True)
183
+ logger.info(f'freeze_llm: {self.freeze_llm}')
184
+ if self.freeze_llm:
185
+ logger.info("freeze llm")
186
+ freeze_module(self.lm)
187
+
188
+ if self.model_config.llm.use_lora:
189
+ self.use_lora = True
190
+ from peft import get_peft_model, LoraConfig, TaskType
191
+ logger.info("Use lora")
192
+ if self.model_config.llm.name == 'internlm_20b':
193
+ peft_config = LoraConfig(
194
+ task_type=TaskType.CAUSAL_LM, inference_mode=False,
195
+ r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
196
+ target_modules=['wqkv', 'wo', 'w1', 'w2', 'w3', 'output']
197
+ )
198
+ else:
199
+ peft_config = LoraConfig(
200
+ task_type=TaskType.CAUSAL_LM, inference_mode=False,
201
+ r=self.model_config.llm.lora_r, lora_alpha=self.model_config.llm.lora_alpha, lora_dropout=self.model_config.llm.lora_dropout,
202
+ target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
203
+ "gate_proj", "up_proj", "down_proj", "lm_head"]
204
+ )
205
+
206
+ self.lm = get_peft_model(self.lm, peft_config)
207
+ self.lm.enable_input_require_grads()
208
+ self.lm.print_trainable_parameters()
209
+ else:
210
+ self.use_lora = False
211
+
212
+
213
+ def build_conversation(self,instruction, user_prompt,media_type='video',msg=''):
214
+
215
+ conversation = ""
216
+ if instruction:
217
+ conversation += instruction
218
+ conversation += ("[INST]" + " ")
219
+
220
+ if media_type == 'image':
221
+ conversation +=( "<Image>" + IMG_TOKEN + "</Image>")#*ilen
222
+ else:
223
+ conversation += ("<Video>" + VID_TOKEN + "</Video>")#*ilen
224
+
225
+ conversation += (msg.rstrip() + "[/INST]")
226
+ conversation += (" [INST] " + user_prompt + " [/INST]")
227
+ conversation += ("")
228
+ return conversation
229
+
230
+
231
+ def pad_text_embeds(
232
+ self,
233
+ input_ids: torch.LongTensor = None,
234
+ image: Optional[torch.Tensor] = None,
235
+ video: Optional[torch.Tensor] = None,
236
+ image_idx = None,
237
+ video_idx = None,
238
+ return_visual: bool = False,
239
+ instruction = None,
240
+ ):
241
+ # text_embeds
242
+ text_embeds = self.lm.get_input_embeddings()(input_ids.long()).detach()
243
+
244
+ visual = None
245
+ visual_idx = None
246
+
247
+ if image is not None:
248
+ B, T, C, H, W = image.shape
249
+ image = image.permute(0, 2, 1, 3, 4)
250
+ prompt_image_embeds = self.encode_vision(image, instruction=instruction)
251
+ visual = prompt_image_embeds
252
+ prompt_image_embeds = self.project_up(prompt_image_embeds)
253
+ prompt_image_embeds = prompt_image_embeds.view(-1, prompt_image_embeds.shape[-1])
254
+ visual_idx = image_idx
255
+ text_embeds[image_idx == 1] = text_embeds[image_idx == 1] * 0 + prompt_image_embeds.to(text_embeds.device)
256
+ elif video is not None:
257
+ if len(video.shape) == 5:
258
+ B, T, C, H, W = video.shape
259
+ N = 1
260
+ else:
261
+ B, N, T, C, H, W = video.shape
262
+ video = video.reshape(B*N, T, C, H, W).permute(0, 2, 1, 3, 4)
263
+ prompt_video_embeds = self.encode_vision(video, instruction=instruction)
264
+ visual = prompt_video_embeds
265
+ prompt_video_embeds = self.project_up(prompt_video_embeds)
266
+ prompt_video_embeds = prompt_video_embeds.view(-1, prompt_video_embeds.shape[-1])
267
+ visual_idx = video_idx
268
+ text_embeds[video_idx == 1] = text_embeds[video_idx == 1] * 0 + prompt_video_embeds.to(text_embeds.device).to(text_embeds.dtype)
269
+ else:
270
+ logger.warn(f"don't get visual input, input_ids: {input_ids}")
271
+
272
+ if return_visual:
273
+ return text_embeds, visual, visual_idx
274
+
275
+ return text_embeds
276
+
277
+
278
+ def encode_vision(
279
+ self,
280
+ image,
281
+ instruction
282
+ ):
283
+ device = image.device
284
+ B = image.shape[0]
285
+ T = image.shape[2]
286
+ use_image = True if T == 1 else False
287
+ image_embeds = self.vision_encoder(image, use_image=use_image)
288
+ C = image_embeds.shape[-1]
289
+ image_embeds = image_embeds.reshape(B, -1, C)
290
+ image_embeds = self.vision_layernorm(image_embeds).to(device) # [B, T*L, C]
291
+
292
+ image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
293
+ if self.extra_num_query_token > 0:
294
+ query_tokens = torch.cat([self.query_tokens, self.extra_query_tokens], dim=1)
295
+ query_tokens = query_tokens.expand(image_embeds.shape[0], -1, -1)
296
+ if instruction is not None:
297
+ text_Qformer = self.qformer_tokenizer(
298
+ instruction,
299
+ padding='longest',
300
+ truncation=True,
301
+ max_length=512,
302
+ return_tensors="pt",
303
+ ).to(image_embeds.device)
304
+ query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image_embeds.device)
305
+ Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
306
+ query_output = self.qformer.bert(
307
+ text_Qformer.input_ids,
308
+ attention_mask=Qformer_atts,
309
+ query_embeds=query_tokens,
310
+ encoder_hidden_states=image_embeds,
311
+ encoder_attention_mask=image_atts,
312
+ return_dict=True,
313
+ )
314
+ else:
315
+ query_output = self.qformer.bert(
316
+ query_embeds=query_tokens,
317
+ encoder_hidden_states=image_embeds,
318
+ encoder_attention_mask=image_atts,
319
+ return_dict=True,
320
+ )
321
+
322
+ return query_output.last_hidden_state[:, :query_tokens.size(1), :]
323
+
324
+
325
+ def build_input_ids(
326
+ self,
327
+ tokenizer,
328
+ conversation,
329
+ max_length,
330
+ add_special_tokens,
331
+ truncation,
332
+ image = None,
333
+ video = None,
334
+ padding = "longest",
335
+ return_tensors = "pt",
336
+ image_placeholder: str = DEFAULT_IMG_PLACEHOLDER,
337
+ video_placeholder: str = DEFAULT_VID_PLACEHOLDER,
338
+ ):
339
+ input_ids = []
340
+ indexs = []
341
+ attention_mask = []
342
+ start, total_len = 0, 0
343
+ while True:
344
+ index1 = conversation.find(image_placeholder, start)
345
+ index2 = conversation.find(video_placeholder, start)
346
+ if index1 == -1 and index2 == -1:
347
+ index = -1
348
+ elif index1 == -1:
349
+ index = index2
350
+ elif index2 == -1:
351
+ index = index1
352
+ else:
353
+ index = min(index1, index2)
354
+ assert index != -1
355
+ if index == -1:
356
+ inputs = tokenizer(conversation[start:], max_length=max_length-total_len, truncation=truncation, padding=padding, return_tensors=return_tensors)
357
+ else:
358
+ inputs = tokenizer(conversation[start:index], max_length=max_length, truncation=truncation, padding='longest', return_tensors=return_tensors)
359
+
360
+ input_ids += inputs.input_ids
361
+ attention_mask += inputs.attention_mask
362
+ total_len += inputs.input_ids[0].shape[0]
363
+ indexs += torch.zeros_like(inputs.input_ids)
364
+
365
+ if index != -1:
366
+ input_ids += [torch.zeros(96).long()]
367
+ attention_mask += [torch.ones(96).long()]
368
+ indexs += [torch.ones(96)]
369
+
370
+ if index == -1:
371
+ return {
372
+ 'input_ids': torch.cat(input_ids),
373
+ 'attention_mask': torch.cat(attention_mask),
374
+ 'index': torch.cat(indexs).to(torch.bool),
375
+ }
376
+ start = index + len(DEFAULT_IMG_PLACEHOLDER)
377
+
378
+
379
+ @property
380
+ def dtype(self):
381
+ return self.lm.dtype
382
+
383
+ @property
384
+ def device(self):
385
+ return self.lm.device
386
+
387
+
388
+ class InternVideo2_Classification_test(PreTrainedModel):
389
+ config_class = VideoChat2Config
390
+ def __init__(self, config):
391
+ super().__init__(config)
392
+ self.conv1 = nn.Conv2d(1, 20, 5)
393
+ self.conv2 = nn.Conv2d(20, 20, 5)
394
+
395
+ def forward(self, x):
396
+ x = self.conv1(x)
397
+ return self.conv2(x)
398
+
399
+ def test_lol(self, x):
400
+ return x
401
+
402
+ if __name__ == "__main__":
403
+
404
+ tokenizer = AutoTokenizer.from_pretrained('OpenGVLab/InternVideo2-Chat-8B',trust_remote_code=True,use_fast=False)
405
+ config = AutoConfig.from_pretrained('OpenGVLab/InternVideo2-Chat-8B', torch_dtype=torch.bfloat16,trust_remote_code=True)
406
+ model = InternVideo2_Classification(config).cuda()
407
+
408
+ B, T, C, H, W = 1, 8, 3, 224, 224
409
+ video_tensor = torch.randn(B,T,C,H,W).cuda()
410
+ user_prompt = "this is a user prompt"
411
+ instruction = "this is an instruction"
412
+
413
+ conversation = model.build_conversation(instruction=instruction, user_prompt=user_prompt, media_type='video')
414
+ tokenized = model.build_input_ids(tokenizer,conversation,max_length=248,add_special_tokens=True,truncation=False,padding=False,return_tensors='pt')
415
+
416
+ input_ids = tokenized['input_ids'].unsqueeze(0).to(model.device)
417
+ attn_mask = tokenized['attention_mask'].unsqueeze(0).to(model.device)
418
+ indexes = tokenized['index'].unsqueeze(0)
419
+ text_embeds = model.pad_text_embeds(input_ids = input_ids,video = video_tensor,video_idx = indexes)
420
+ outputs = model.lm(inputs_embeds=text_embeds, attention_mask=attn_mask,output_hidden_states=True,return_dict=True)