ClinicalBERT Versione dopo 13 epochs
Browse files- README.md +75 -0
- config.json +26 -0
- pytorch_model.bin +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: medicalai/ClinicalBERT
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: ICU_Returns_ClinicalBERT
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# ICU_Returns_ClinicalBERT
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [medicalai/ClinicalBERT](https://huggingface.co/medicalai/ClinicalBERT) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.3201
|
18 |
+
- F1:: 0.7134
|
19 |
+
- Roc Auc: 0.7225
|
20 |
+
- Precision with 0:: 0.8462
|
21 |
+
- Precision with 1:: 0.6640
|
22 |
+
- Recall with 0:: 0.5440
|
23 |
+
- Recal with 1:: 0.9011
|
24 |
+
- Accuracy:: 0.7225
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.0001
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 13
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | F1: | Roc Auc | Precision with 0: | Precision with 1: | Recall with 0: | Recal with 1: | Accuracy: |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:-----------------:|:-----------------:|:--------------:|:--------------:|:---------:|
|
55 |
+
| No log | 1.0 | 46 | 0.7057 | 0.3454 | 0.5055 | 1.0 | 0.5028 | 0.0110 | 1.0 | 0.5055 |
|
56 |
+
| No log | 2.0 | 92 | 0.6827 | 0.5715 | 0.5742 | 0.5882 | 0.5640 | 0.4945 | 0.6538 | 0.5742 |
|
57 |
+
| No log | 3.0 | 138 | 0.7221 | 0.4612 | 0.5467 | 0.7297 | 0.5260 | 0.1484 | 0.9451 | 0.5467 |
|
58 |
+
| No log | 4.0 | 184 | 0.6284 | 0.6693 | 0.6841 | 0.6293 | 0.8190 | 0.8956 | 0.4725 | 0.6841 |
|
59 |
+
| No log | 5.0 | 230 | 0.9235 | 0.6283 | 0.6401 | 0.7179 | 0.6032 | 0.4615 | 0.8187 | 0.6401 |
|
60 |
+
| No log | 6.0 | 276 | 0.8772 | 0.6534 | 0.6648 | 0.7586 | 0.6210 | 0.4835 | 0.8462 | 0.6648 |
|
61 |
+
| No log | 7.0 | 322 | 0.7968 | 0.7677 | 0.7692 | 0.8224 | 0.7311 | 0.6868 | 0.8516 | 0.7692 |
|
62 |
+
| No log | 8.0 | 368 | 0.6826 | 0.8132 | 0.8132 | 0.8167 | 0.8098 | 0.8077 | 0.8187 | 0.8132 |
|
63 |
+
| No log | 9.0 | 414 | 1.2195 | 0.6950 | 0.7033 | 0.8033 | 0.6529 | 0.5385 | 0.8681 | 0.7033 |
|
64 |
+
| No log | 10.0 | 460 | 0.9542 | 0.7617 | 0.7637 | 0.8243 | 0.7222 | 0.6703 | 0.8571 | 0.7637 |
|
65 |
+
| 0.3635 | 11.0 | 506 | 1.3032 | 0.7079 | 0.7143 | 0.8047 | 0.6653 | 0.5659 | 0.8626 | 0.7143 |
|
66 |
+
| 0.3635 | 12.0 | 552 | 1.4170 | 0.7063 | 0.7143 | 0.8197 | 0.6612 | 0.5495 | 0.8791 | 0.7143 |
|
67 |
+
| 0.3635 | 13.0 | 598 | 1.3201 | 0.7134 | 0.7225 | 0.8462 | 0.6640 | 0.5440 | 0.9011 | 0.7225 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- Transformers 4.34.0
|
73 |
+
- Pytorch 2.1.0+cu121
|
74 |
+
- Datasets 2.14.5
|
75 |
+
- Tokenizers 0.14.1
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "medicalai/ClinicalBERT",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertForSequenceClassification"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"output_past": true,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"problem_type": "single_label_classification",
|
19 |
+
"qa_dropout": 0.1,
|
20 |
+
"seq_classif_dropout": 0.2,
|
21 |
+
"sinusoidal_pos_embds": false,
|
22 |
+
"tie_weights_": true,
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.34.0",
|
25 |
+
"vocab_size": 119547
|
26 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7679aa1a0c13d75dfbfbeb4a64644f3111b7abada1eea1778359b8c1568e9132
|
3 |
+
size 541340778
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5efb9dbaeb41329f483c3d23be63696eafbc721a945de973c2e05f31d557d63b
|
3 |
+
size 4536
|