|
|
import argparse |
|
|
from argparse import Namespace |
|
|
from pathlib import Path |
|
|
import warnings |
|
|
|
|
|
import torch |
|
|
import pytorch_lightning as pl |
|
|
import yaml |
|
|
|
|
|
import sys |
|
|
basedir = Path(__file__).resolve().parent.parent.parent |
|
|
sys.path.append(str(basedir)) |
|
|
|
|
|
from src.size_predictor.size_model import SizeModel |
|
|
from src.utils import set_deterministic, disable_rdkit_logging |
|
|
|
|
|
|
|
|
def dict_to_namespace(input_dict): |
|
|
""" Recursively convert a nested dictionary into a Namespace object """ |
|
|
if isinstance(input_dict, dict): |
|
|
output_namespace = Namespace() |
|
|
output = output_namespace.__dict__ |
|
|
for key, value in input_dict.items(): |
|
|
output[key] = dict_to_namespace(value) |
|
|
return output_namespace |
|
|
|
|
|
elif isinstance(input_dict, Namespace): |
|
|
|
|
|
return dict_to_namespace(input_dict.__dict__) |
|
|
|
|
|
else: |
|
|
return input_dict |
|
|
|
|
|
|
|
|
def merge_args_and_yaml(args, config_dict): |
|
|
arg_dict = args.__dict__ |
|
|
for key, value in config_dict.items(): |
|
|
if key in arg_dict: |
|
|
warnings.warn(f"Command line argument '{key}' (value: " |
|
|
f"{arg_dict[key]}) will be overwritten with value " |
|
|
f"{value} provided in the config file.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
arg_dict[key] = dict_to_namespace(value) |
|
|
|
|
|
return args |
|
|
|
|
|
|
|
|
def merge_configs(config, resume_config): |
|
|
for key, value in resume_config.items(): |
|
|
if isinstance(value, Namespace): |
|
|
value = value.__dict__ |
|
|
|
|
|
if isinstance(value, dict): |
|
|
|
|
|
value = merge_configs(config[key], value) |
|
|
|
|
|
if key in config and config[key] != value: |
|
|
warnings.warn(f"Config parameter '{key}' (value: " |
|
|
f"{config[key]}) will be overwritten with value " |
|
|
f"{value} from the checkpoint.") |
|
|
config[key] = value |
|
|
return config |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
p = argparse.ArgumentParser() |
|
|
p.add_argument('--config', type=str, required=True) |
|
|
p.add_argument('--resume', type=str, default=None) |
|
|
p.add_argument('--debug', action='store_true') |
|
|
args = p.parse_args() |
|
|
|
|
|
set_deterministic(seed=42) |
|
|
disable_rdkit_logging() |
|
|
|
|
|
with open(args.config, 'r') as f: |
|
|
config = yaml.safe_load(f) |
|
|
|
|
|
assert 'resume' not in config |
|
|
|
|
|
|
|
|
ckpt_path = None if args.resume is None else Path(args.resume) |
|
|
if args.resume is not None: |
|
|
resume_config = torch.load( |
|
|
ckpt_path, map_location=torch.device('cpu'))['hyper_parameters'] |
|
|
config = merge_configs(config, resume_config) |
|
|
|
|
|
args = merge_args_and_yaml(args, config) |
|
|
|
|
|
if args.debug: |
|
|
print('DEBUG MODE') |
|
|
args.run_name = 'debug' |
|
|
args.wandb_params.mode = 'disabled' |
|
|
args.train_params.enable_progress_bar = True |
|
|
args.train_params.num_workers = 0 |
|
|
|
|
|
|
|
|
out_dir = Path(args.train_params.logdir, args.run_name) |
|
|
|
|
|
pl_module = SizeModel( |
|
|
max_size=args.max_size, |
|
|
pocket_representation=args.pocket_representation, |
|
|
train_params=args.train_params, |
|
|
loss_params=args.loss_params, |
|
|
eval_params=None, |
|
|
predictor_params=args.predictor_params, |
|
|
) |
|
|
|
|
|
logger = pl.loggers.WandbLogger( |
|
|
save_dir=args.train_params.logdir, |
|
|
project='FlexFlow', |
|
|
group=args.wandb_params.group, |
|
|
name=args.run_name, |
|
|
id=args.run_name, |
|
|
resume='must' if args.resume is not None else False, |
|
|
entity=args.wandb_params.entity, |
|
|
mode=args.wandb_params.mode, |
|
|
) |
|
|
|
|
|
checkpoint_callbacks = [ |
|
|
pl.callbacks.ModelCheckpoint( |
|
|
dirpath=Path(out_dir, 'checkpoints'), |
|
|
filename="best-acc={accuracy/val:.2f}-epoch={epoch:02d}", |
|
|
monitor="accuracy/val", |
|
|
save_top_k=1, |
|
|
save_last=True, |
|
|
mode="max", |
|
|
|
|
|
), |
|
|
pl.callbacks.ModelCheckpoint( |
|
|
dirpath=Path(out_dir, 'checkpoints'), |
|
|
filename="best-mse={mse/val:.2f}-epoch={epoch:02d}", |
|
|
monitor="loss/train", |
|
|
save_top_k=1, |
|
|
save_last=False, |
|
|
mode="min", |
|
|
), |
|
|
] |
|
|
|
|
|
trainer = pl.Trainer( |
|
|
max_epochs=args.train_params.n_epochs, |
|
|
logger=logger, |
|
|
callbacks=checkpoint_callbacks, |
|
|
enable_progress_bar=args.train_params.enable_progress_bar, |
|
|
|
|
|
num_sanity_val_steps=args.train_params.num_sanity_val_steps, |
|
|
accumulate_grad_batches=args.train_params.accumulate_grad_batches, |
|
|
accelerator='gpu' if args.train_params.gpus > 0 else 'cpu', |
|
|
devices=args.train_params.gpus if args.train_params.gpus > 0 else 'auto', |
|
|
strategy=('ddp' if args.train_params.gpus > 1 else None) |
|
|
) |
|
|
|
|
|
trainer.fit(model=pl_module, ckpt_path=ckpt_path) |
|
|
|
|
|
|
|
|
|
|
|
|