|
|
import math |
|
|
from typing import Dict |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
from torch import nn |
|
|
import torch.nn.functional as F |
|
|
from torch_scatter import scatter_add, scatter_mean |
|
|
|
|
|
import utils |
|
|
|
|
|
|
|
|
class EnVariationalDiffusion(nn.Module): |
|
|
""" |
|
|
The E(n) Diffusion Module. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
dynamics: nn.Module, atom_nf: int, residue_nf: int, |
|
|
n_dims: int, size_histogram: Dict, |
|
|
timesteps: int = 1000, parametrization='eps', |
|
|
noise_schedule='learned', noise_precision=1e-4, |
|
|
loss_type='vlb', norm_values=(1., 1.), norm_biases=(None, 0.), |
|
|
virtual_node_idx=None): |
|
|
super().__init__() |
|
|
|
|
|
assert loss_type in {'vlb', 'l2'} |
|
|
self.loss_type = loss_type |
|
|
if noise_schedule == 'learned': |
|
|
assert loss_type == 'vlb', 'A noise schedule can only be learned' \ |
|
|
' with a vlb objective.' |
|
|
|
|
|
|
|
|
assert parametrization == 'eps' |
|
|
|
|
|
if noise_schedule == 'learned': |
|
|
self.gamma = GammaNetwork() |
|
|
else: |
|
|
self.gamma = PredefinedNoiseSchedule(noise_schedule, |
|
|
timesteps=timesteps, |
|
|
precision=noise_precision) |
|
|
|
|
|
|
|
|
self.dynamics = dynamics |
|
|
|
|
|
self.atom_nf = atom_nf |
|
|
self.residue_nf = residue_nf |
|
|
self.n_dims = n_dims |
|
|
self.num_classes = self.atom_nf |
|
|
|
|
|
self.T = timesteps |
|
|
self.parametrization = parametrization |
|
|
|
|
|
self.norm_values = norm_values |
|
|
self.norm_biases = norm_biases |
|
|
self.register_buffer('buffer', torch.zeros(1)) |
|
|
|
|
|
|
|
|
self.size_distribution = DistributionNodes(size_histogram) |
|
|
|
|
|
|
|
|
self.vnode_idx = virtual_node_idx |
|
|
|
|
|
if noise_schedule != 'learned': |
|
|
self.check_issues_norm_values() |
|
|
|
|
|
def check_issues_norm_values(self, num_stdevs=8): |
|
|
zeros = torch.zeros((1, 1)) |
|
|
gamma_0 = self.gamma(zeros) |
|
|
sigma_0 = self.sigma(gamma_0, target_tensor=zeros).item() |
|
|
|
|
|
|
|
|
|
|
|
norm_value = self.norm_values[1] |
|
|
|
|
|
if sigma_0 * num_stdevs > 1. / norm_value: |
|
|
raise ValueError( |
|
|
f'Value for normalization value {norm_value} probably too ' |
|
|
f'large with sigma_0 {sigma_0:.5f} and ' |
|
|
f'1 / norm_value = {1. / norm_value}') |
|
|
|
|
|
def sigma_and_alpha_t_given_s(self, gamma_t: torch.Tensor, |
|
|
gamma_s: torch.Tensor, |
|
|
target_tensor: torch.Tensor): |
|
|
""" |
|
|
Computes sigma t given s, using gamma_t and gamma_s. Used during sampling. |
|
|
These are defined as: |
|
|
alpha t given s = alpha t / alpha s, |
|
|
sigma t given s = sqrt(1 - (alpha t given s) ^2 ). |
|
|
""" |
|
|
sigma2_t_given_s = self.inflate_batch_array( |
|
|
-torch.expm1(F.softplus(gamma_s) - F.softplus(gamma_t)), target_tensor |
|
|
) |
|
|
|
|
|
|
|
|
log_alpha2_t = F.logsigmoid(-gamma_t) |
|
|
log_alpha2_s = F.logsigmoid(-gamma_s) |
|
|
log_alpha2_t_given_s = log_alpha2_t - log_alpha2_s |
|
|
|
|
|
alpha_t_given_s = torch.exp(0.5 * log_alpha2_t_given_s) |
|
|
alpha_t_given_s = self.inflate_batch_array( |
|
|
alpha_t_given_s, target_tensor) |
|
|
|
|
|
sigma_t_given_s = torch.sqrt(sigma2_t_given_s) |
|
|
|
|
|
return sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s |
|
|
|
|
|
def kl_prior_with_pocket(self, xh_lig, xh_pocket, mask_lig, mask_pocket, |
|
|
num_nodes): |
|
|
"""Computes the KL between q(z1 | x) and the prior p(z1) = Normal(0, 1). |
|
|
|
|
|
This is essentially a lot of work for something that is in practice |
|
|
negligible in the loss. However, you compute it so that you see it when |
|
|
you've made a mistake in your noise schedule. |
|
|
""" |
|
|
batch_size = len(num_nodes) |
|
|
|
|
|
|
|
|
ones = torch.ones((batch_size, 1), device=xh_lig.device) |
|
|
gamma_T = self.gamma(ones) |
|
|
alpha_T = self.alpha(gamma_T, xh_lig) |
|
|
|
|
|
|
|
|
mu_T_lig = alpha_T[mask_lig] * xh_lig |
|
|
mu_T_lig_x, mu_T_lig_h = mu_T_lig[:, :self.n_dims], \ |
|
|
mu_T_lig[:, self.n_dims:] |
|
|
|
|
|
|
|
|
sigma_T_x = self.sigma(gamma_T, mu_T_lig_x).squeeze() |
|
|
sigma_T_h = self.sigma(gamma_T, mu_T_lig_h).squeeze() |
|
|
|
|
|
|
|
|
mu_T_pocket = alpha_T[mask_pocket] * xh_pocket |
|
|
mu_T_pocket_x, mu_T_pocket_h = mu_T_pocket[:, :self.n_dims], \ |
|
|
mu_T_pocket[:, self.n_dims:] |
|
|
|
|
|
|
|
|
zeros_lig = torch.zeros_like(mu_T_lig_h) |
|
|
zeros_pocket = torch.zeros_like(mu_T_pocket_h) |
|
|
ones = torch.ones_like(sigma_T_h) |
|
|
mu_norm2 = self.sum_except_batch((mu_T_lig_h - zeros_lig) ** 2, mask_lig) + \ |
|
|
self.sum_except_batch((mu_T_pocket_h - zeros_pocket) ** 2, mask_pocket) |
|
|
kl_distance_h = self.gaussian_KL(mu_norm2, sigma_T_h, ones, d=1) |
|
|
|
|
|
|
|
|
zeros_lig = torch.zeros_like(mu_T_lig_x) |
|
|
zeros_pocket = torch.zeros_like(mu_T_pocket_x) |
|
|
ones = torch.ones_like(sigma_T_x) |
|
|
mu_norm2 = self.sum_except_batch((mu_T_lig_x - zeros_lig) ** 2, mask_lig) + \ |
|
|
self.sum_except_batch((mu_T_pocket_x - zeros_pocket) ** 2, mask_pocket) |
|
|
subspace_d = self.subspace_dimensionality(num_nodes) |
|
|
kl_distance_x = self.gaussian_KL(mu_norm2, sigma_T_x, ones, subspace_d) |
|
|
|
|
|
return kl_distance_x + kl_distance_h |
|
|
|
|
|
def compute_x_pred(self, net_out, zt, gamma_t, batch_mask): |
|
|
"""Commputes x_pred, i.e. the most likely prediction of x.""" |
|
|
if self.parametrization == 'x': |
|
|
x_pred = net_out |
|
|
elif self.parametrization == 'eps': |
|
|
sigma_t = self.sigma(gamma_t, target_tensor=net_out) |
|
|
alpha_t = self.alpha(gamma_t, target_tensor=net_out) |
|
|
eps_t = net_out |
|
|
x_pred = 1. / alpha_t[batch_mask] * (zt - sigma_t[batch_mask] * eps_t) |
|
|
else: |
|
|
raise ValueError(self.parametrization) |
|
|
|
|
|
return x_pred |
|
|
|
|
|
def log_constants_p_x_given_z0(self, n_nodes, device): |
|
|
"""Computes p(x|z0).""" |
|
|
|
|
|
batch_size = len(n_nodes) |
|
|
degrees_of_freedom_x = self.subspace_dimensionality(n_nodes) |
|
|
|
|
|
zeros = torch.zeros((batch_size, 1), device=device) |
|
|
gamma_0 = self.gamma(zeros) |
|
|
|
|
|
|
|
|
log_sigma_x = 0.5 * gamma_0.view(batch_size) |
|
|
|
|
|
return degrees_of_freedom_x * (- log_sigma_x - 0.5 * np.log(2 * np.pi)) |
|
|
|
|
|
def log_pxh_given_z0_without_constants( |
|
|
self, ligand, z_0_lig, eps_lig, net_out_lig, |
|
|
pocket, z_0_pocket, eps_pocket, net_out_pocket, |
|
|
gamma_0, epsilon=1e-10): |
|
|
|
|
|
|
|
|
z_h_lig = z_0_lig[:, self.n_dims:] |
|
|
z_h_pocket = z_0_pocket[:, self.n_dims:] |
|
|
|
|
|
|
|
|
eps_lig_x = eps_lig[:, :self.n_dims] |
|
|
net_lig_x = net_out_lig[:, :self.n_dims] |
|
|
eps_pocket_x = eps_pocket[:, :self.n_dims] |
|
|
net_pocket_x = net_out_pocket[:, :self.n_dims] |
|
|
|
|
|
|
|
|
sigma_0 = self.sigma(gamma_0, target_tensor=z_0_lig) |
|
|
sigma_0_cat = sigma_0 * self.norm_values[1] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
log_p_x_given_z0_without_constants_ligand = -0.5 * ( |
|
|
self.sum_except_batch((eps_lig_x - net_lig_x) ** 2, ligand['mask']) |
|
|
) |
|
|
|
|
|
log_p_x_given_z0_without_constants_pocket = -0.5 * ( |
|
|
self.sum_except_batch((eps_pocket_x - net_pocket_x) ** 2, |
|
|
pocket['mask']) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
ligand_onehot = ligand['one_hot'] * self.norm_values[1] + self.norm_biases[1] |
|
|
pocket_onehot = pocket['one_hot'] * self.norm_values[1] + self.norm_biases[1] |
|
|
|
|
|
estimated_ligand_onehot = z_h_lig * self.norm_values[1] + self.norm_biases[1] |
|
|
estimated_pocket_onehot = z_h_pocket * self.norm_values[1] + self.norm_biases[1] |
|
|
|
|
|
|
|
|
centered_ligand_onehot = estimated_ligand_onehot - 1 |
|
|
centered_pocket_onehot = estimated_pocket_onehot - 1 |
|
|
|
|
|
|
|
|
|
|
|
log_ph_cat_proportional_ligand = torch.log( |
|
|
self.cdf_standard_gaussian((centered_ligand_onehot + 0.5) / sigma_0_cat[ligand['mask']]) |
|
|
- self.cdf_standard_gaussian((centered_ligand_onehot - 0.5) / sigma_0_cat[ligand['mask']]) |
|
|
+ epsilon |
|
|
) |
|
|
log_ph_cat_proportional_pocket = torch.log( |
|
|
self.cdf_standard_gaussian((centered_pocket_onehot + 0.5) / sigma_0_cat[pocket['mask']]) |
|
|
- self.cdf_standard_gaussian((centered_pocket_onehot - 0.5) / sigma_0_cat[pocket['mask']]) |
|
|
+ epsilon |
|
|
) |
|
|
|
|
|
|
|
|
log_Z = torch.logsumexp(log_ph_cat_proportional_ligand, dim=1, |
|
|
keepdim=True) |
|
|
log_probabilities_ligand = log_ph_cat_proportional_ligand - log_Z |
|
|
|
|
|
log_Z = torch.logsumexp(log_ph_cat_proportional_pocket, dim=1, |
|
|
keepdim=True) |
|
|
log_probabilities_pocket = log_ph_cat_proportional_pocket - log_Z |
|
|
|
|
|
|
|
|
|
|
|
log_ph_given_z0_ligand = self.sum_except_batch( |
|
|
log_probabilities_ligand * ligand_onehot, ligand['mask']) |
|
|
log_ph_given_z0_pocket = self.sum_except_batch( |
|
|
log_probabilities_pocket * pocket_onehot, pocket['mask']) |
|
|
|
|
|
|
|
|
log_ph_given_z0 = log_ph_given_z0_ligand + log_ph_given_z0_pocket |
|
|
|
|
|
return log_p_x_given_z0_without_constants_ligand, \ |
|
|
log_p_x_given_z0_without_constants_pocket, log_ph_given_z0 |
|
|
|
|
|
def sample_p_xh_given_z0(self, z0_lig, z0_pocket, lig_mask, pocket_mask, |
|
|
batch_size, fix_noise=False): |
|
|
"""Samples x ~ p(x|z0).""" |
|
|
t_zeros = torch.zeros(size=(batch_size, 1), device=z0_lig.device) |
|
|
gamma_0 = self.gamma(t_zeros) |
|
|
|
|
|
sigma_x = self.SNR(-0.5 * gamma_0) |
|
|
net_out_lig, net_out_pocket = self.dynamics( |
|
|
z0_lig, z0_pocket, t_zeros, lig_mask, pocket_mask) |
|
|
|
|
|
|
|
|
mu_x_lig = self.compute_x_pred(net_out_lig, z0_lig, gamma_0, lig_mask) |
|
|
mu_x_pocket = self.compute_x_pred(net_out_pocket, z0_pocket, gamma_0, |
|
|
pocket_mask) |
|
|
xh_lig, xh_pocket = self.sample_normal(mu_x_lig, mu_x_pocket, sigma_x, |
|
|
lig_mask, pocket_mask, fix_noise) |
|
|
|
|
|
x_lig, h_lig = self.unnormalize( |
|
|
xh_lig[:, :self.n_dims], z0_lig[:, self.n_dims:]) |
|
|
x_pocket, h_pocket = self.unnormalize( |
|
|
xh_pocket[:, :self.n_dims], z0_pocket[:, self.n_dims:]) |
|
|
|
|
|
h_lig = F.one_hot(torch.argmax(h_lig, dim=1), self.atom_nf) |
|
|
h_pocket = F.one_hot(torch.argmax(h_pocket, dim=1), self.residue_nf) |
|
|
|
|
|
return x_lig, h_lig, x_pocket, h_pocket |
|
|
|
|
|
def sample_normal(self, mu_lig, mu_pocket, sigma, lig_mask, pocket_mask, |
|
|
fix_noise=False): |
|
|
"""Samples from a Normal distribution.""" |
|
|
if fix_noise: |
|
|
|
|
|
raise NotImplementedError("fix_noise option isn't implemented yet") |
|
|
eps_lig, eps_pocket = self.sample_combined_position_feature_noise( |
|
|
lig_mask, pocket_mask) |
|
|
|
|
|
return mu_lig + sigma[lig_mask] * eps_lig, \ |
|
|
mu_pocket + sigma[pocket_mask] * eps_pocket |
|
|
|
|
|
def noised_representation(self, xh_lig, xh_pocket, lig_mask, pocket_mask, |
|
|
gamma_t): |
|
|
|
|
|
alpha_t = self.alpha(gamma_t, xh_lig) |
|
|
sigma_t = self.sigma(gamma_t, xh_lig) |
|
|
|
|
|
|
|
|
eps_lig, eps_pocket = self.sample_combined_position_feature_noise( |
|
|
lig_mask, pocket_mask) |
|
|
|
|
|
|
|
|
z_t_lig = alpha_t[lig_mask] * xh_lig + sigma_t[lig_mask] * eps_lig |
|
|
z_t_pocket = alpha_t[pocket_mask] * xh_pocket + \ |
|
|
sigma_t[pocket_mask] * eps_pocket |
|
|
|
|
|
return z_t_lig, z_t_pocket, eps_lig, eps_pocket |
|
|
|
|
|
def log_pN(self, N_lig, N_pocket): |
|
|
""" |
|
|
Prior on the sample size for computing |
|
|
log p(x,h,N) = log p(x,h|N) + log p(N), where log p(x,h|N) is the |
|
|
model's output |
|
|
Args: |
|
|
N: array of sample sizes |
|
|
Returns: |
|
|
log p(N) |
|
|
""" |
|
|
log_pN = self.size_distribution.log_prob(N_lig, N_pocket) |
|
|
return log_pN |
|
|
|
|
|
def delta_log_px(self, num_nodes): |
|
|
return -self.subspace_dimensionality(num_nodes) * \ |
|
|
np.log(self.norm_values[0]) |
|
|
|
|
|
def forward(self, ligand, pocket, return_info=False): |
|
|
""" |
|
|
Computes the loss and NLL terms |
|
|
""" |
|
|
|
|
|
ligand, pocket = self.normalize(ligand, pocket) |
|
|
|
|
|
|
|
|
delta_log_px = self.delta_log_px(ligand['size'] + pocket['size']) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lowest_t = 0 if self.training else 1 |
|
|
t_int = torch.randint( |
|
|
lowest_t, self.T + 1, size=(ligand['size'].size(0), 1), |
|
|
device=ligand['x'].device).float() |
|
|
s_int = t_int - 1 |
|
|
|
|
|
|
|
|
t_is_zero = (t_int == 0).float() |
|
|
t_is_not_zero = 1 - t_is_zero |
|
|
|
|
|
|
|
|
|
|
|
s = s_int / self.T |
|
|
t = t_int / self.T |
|
|
|
|
|
|
|
|
gamma_s = self.inflate_batch_array(self.gamma(s), ligand['x']) |
|
|
gamma_t = self.inflate_batch_array(self.gamma(t), ligand['x']) |
|
|
|
|
|
|
|
|
xh_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1) |
|
|
xh_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1) |
|
|
|
|
|
|
|
|
z_t_lig, z_t_pocket, eps_t_lig, eps_t_pocket = \ |
|
|
self.noised_representation(xh_lig, xh_pocket, ligand['mask'], |
|
|
pocket['mask'], gamma_t) |
|
|
|
|
|
|
|
|
net_out_lig, net_out_pocket = self.dynamics( |
|
|
z_t_lig, z_t_pocket, t, ligand['mask'], pocket['mask']) |
|
|
|
|
|
|
|
|
xh_lig_hat = self.xh_given_zt_and_epsilon(z_t_lig, net_out_lig, gamma_t, |
|
|
ligand['mask']) |
|
|
|
|
|
|
|
|
error_t_lig = self.sum_except_batch((eps_t_lig - net_out_lig) ** 2, |
|
|
ligand['mask']) |
|
|
|
|
|
error_t_pocket = self.sum_except_batch( |
|
|
(eps_t_pocket - net_out_pocket) ** 2, pocket['mask']) |
|
|
|
|
|
|
|
|
SNR_weight = (1 - self.SNR(gamma_s - gamma_t)).squeeze(1) |
|
|
assert error_t_lig.size() == SNR_weight.size() |
|
|
|
|
|
|
|
|
|
|
|
neg_log_constants = -self.log_constants_p_x_given_z0( |
|
|
n_nodes=ligand['size'] + pocket['size'], device=error_t_lig.device) |
|
|
|
|
|
|
|
|
|
|
|
kl_prior = self.kl_prior_with_pocket( |
|
|
xh_lig, xh_pocket, ligand['mask'], pocket['mask'], |
|
|
ligand['size'] + pocket['size']) |
|
|
|
|
|
if self.training: |
|
|
|
|
|
|
|
|
log_p_x_given_z0_without_constants_ligand, \ |
|
|
log_p_x_given_z0_without_constants_pocket, log_ph_given_z0 = \ |
|
|
self.log_pxh_given_z0_without_constants( |
|
|
ligand, z_t_lig, eps_t_lig, net_out_lig, |
|
|
pocket, z_t_pocket, eps_t_pocket, net_out_pocket, gamma_t) |
|
|
|
|
|
loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand * \ |
|
|
t_is_zero.squeeze() |
|
|
loss_0_x_pocket = -log_p_x_given_z0_without_constants_pocket * \ |
|
|
t_is_zero.squeeze() |
|
|
loss_0_h = -log_ph_given_z0 * t_is_zero.squeeze() |
|
|
|
|
|
|
|
|
error_t_lig = error_t_lig * t_is_not_zero.squeeze() |
|
|
error_t_pocket = error_t_pocket * t_is_not_zero.squeeze() |
|
|
|
|
|
else: |
|
|
|
|
|
t_zeros = torch.zeros_like(s) |
|
|
gamma_0 = self.inflate_batch_array(self.gamma(t_zeros), ligand['x']) |
|
|
|
|
|
|
|
|
z_0_lig, z_0_pocket, eps_0_lig, eps_0_pocket = \ |
|
|
self.noised_representation(xh_lig, xh_pocket, ligand['mask'], |
|
|
pocket['mask'], gamma_0) |
|
|
|
|
|
net_out_0_lig, net_out_0_pocket = self.dynamics( |
|
|
z_0_lig, z_0_pocket, t_zeros, ligand['mask'], pocket['mask']) |
|
|
|
|
|
log_p_x_given_z0_without_constants_ligand, \ |
|
|
log_p_x_given_z0_without_constants_pocket, log_ph_given_z0 = \ |
|
|
self.log_pxh_given_z0_without_constants( |
|
|
ligand, z_0_lig, eps_0_lig, net_out_0_lig, |
|
|
pocket, z_0_pocket, eps_0_pocket, net_out_0_pocket, gamma_0) |
|
|
loss_0_x_ligand = -log_p_x_given_z0_without_constants_ligand |
|
|
loss_0_x_pocket = -log_p_x_given_z0_without_constants_pocket |
|
|
loss_0_h = -log_ph_given_z0 |
|
|
|
|
|
|
|
|
log_pN = self.log_pN(ligand['size'], pocket['size']) |
|
|
|
|
|
info = { |
|
|
'eps_hat_lig_x': scatter_mean( |
|
|
net_out_lig[:, :self.n_dims].abs().mean(1), ligand['mask'], |
|
|
dim=0).mean(), |
|
|
'eps_hat_lig_h': scatter_mean( |
|
|
net_out_lig[:, self.n_dims:].abs().mean(1), ligand['mask'], |
|
|
dim=0).mean(), |
|
|
'eps_hat_pocket_x': scatter_mean( |
|
|
net_out_pocket[:, :self.n_dims].abs().mean(1), pocket['mask'], |
|
|
dim=0).mean(), |
|
|
'eps_hat_pocket_h': scatter_mean( |
|
|
net_out_pocket[:, self.n_dims:].abs().mean(1), pocket['mask'], |
|
|
dim=0).mean(), |
|
|
} |
|
|
loss_terms = (delta_log_px, error_t_lig, error_t_pocket, SNR_weight, |
|
|
loss_0_x_ligand, loss_0_x_pocket, loss_0_h, |
|
|
neg_log_constants, kl_prior, log_pN, |
|
|
t_int.squeeze(), xh_lig_hat) |
|
|
return (*loss_terms, info) if return_info else loss_terms |
|
|
|
|
|
def xh_given_zt_and_epsilon(self, z_t, epsilon, gamma_t, batch_mask): |
|
|
""" Equation (7) in the EDM paper """ |
|
|
alpha_t = self.alpha(gamma_t, z_t) |
|
|
sigma_t = self.sigma(gamma_t, z_t) |
|
|
xh = z_t / alpha_t[batch_mask] - epsilon * sigma_t[batch_mask] / \ |
|
|
alpha_t[batch_mask] |
|
|
return xh |
|
|
|
|
|
def sample_p_zt_given_zs(self, zs_lig, zs_pocket, ligand_mask, pocket_mask, |
|
|
gamma_t, gamma_s, fix_noise=False): |
|
|
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \ |
|
|
self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zs_lig) |
|
|
|
|
|
mu_lig = alpha_t_given_s[ligand_mask] * zs_lig |
|
|
mu_pocket = alpha_t_given_s[pocket_mask] * zs_pocket |
|
|
zt_lig, zt_pocket = self.sample_normal( |
|
|
mu_lig, mu_pocket, sigma_t_given_s, ligand_mask, pocket_mask, |
|
|
fix_noise) |
|
|
|
|
|
|
|
|
zt_x = self.remove_mean_batch( |
|
|
torch.cat((zt_lig[:, :self.n_dims], zt_pocket[:, :self.n_dims]), |
|
|
dim=0), |
|
|
torch.cat((ligand_mask, pocket_mask)) |
|
|
) |
|
|
zt_lig = torch.cat((zt_x[:len(ligand_mask)], |
|
|
zt_lig[:, self.n_dims:]), dim=1) |
|
|
zt_pocket = torch.cat((zt_x[len(ligand_mask):], |
|
|
zt_pocket[:, self.n_dims:]), dim=1) |
|
|
|
|
|
return zt_lig, zt_pocket |
|
|
|
|
|
def sample_p_zs_given_zt(self, s, t, zt_lig, zt_pocket, ligand_mask, |
|
|
pocket_mask, fix_noise=False): |
|
|
"""Samples from zs ~ p(zs | zt). Only used during sampling.""" |
|
|
gamma_s = self.gamma(s) |
|
|
gamma_t = self.gamma(t) |
|
|
|
|
|
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = \ |
|
|
self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, zt_lig) |
|
|
|
|
|
sigma_s = self.sigma(gamma_s, target_tensor=zt_lig) |
|
|
sigma_t = self.sigma(gamma_t, target_tensor=zt_lig) |
|
|
|
|
|
|
|
|
eps_t_lig, eps_t_pocket = self.dynamics( |
|
|
zt_lig, zt_pocket, t, ligand_mask, pocket_mask) |
|
|
|
|
|
|
|
|
combined_mask = torch.cat((ligand_mask, pocket_mask)) |
|
|
self.assert_mean_zero_with_mask( |
|
|
torch.cat((zt_lig[:, :self.n_dims], |
|
|
zt_pocket[:, :self.n_dims]), dim=0), |
|
|
combined_mask) |
|
|
self.assert_mean_zero_with_mask( |
|
|
torch.cat((eps_t_lig[:, :self.n_dims], |
|
|
eps_t_pocket[:, :self.n_dims]), dim=0), |
|
|
combined_mask) |
|
|
|
|
|
|
|
|
|
|
|
mu_lig = zt_lig / alpha_t_given_s[ligand_mask] - \ |
|
|
(sigma2_t_given_s / alpha_t_given_s / sigma_t)[ligand_mask] * \ |
|
|
eps_t_lig |
|
|
mu_pocket = zt_pocket / alpha_t_given_s[pocket_mask] - \ |
|
|
(sigma2_t_given_s / alpha_t_given_s / sigma_t)[pocket_mask] * \ |
|
|
eps_t_pocket |
|
|
|
|
|
|
|
|
sigma = sigma_t_given_s * sigma_s / sigma_t |
|
|
|
|
|
|
|
|
zs_lig, zs_pocket = self.sample_normal(mu_lig, mu_pocket, sigma, |
|
|
ligand_mask, pocket_mask, |
|
|
fix_noise) |
|
|
|
|
|
|
|
|
zs_x = self.remove_mean_batch( |
|
|
torch.cat((zs_lig[:, :self.n_dims], |
|
|
zs_pocket[:, :self.n_dims]), dim=0), |
|
|
torch.cat((ligand_mask, pocket_mask)) |
|
|
) |
|
|
zs_lig = torch.cat((zs_x[:len(ligand_mask)], |
|
|
zs_lig[:, self.n_dims:]), dim=1) |
|
|
zs_pocket = torch.cat((zs_x[len(ligand_mask):], |
|
|
zs_pocket[:, self.n_dims:]), dim=1) |
|
|
return zs_lig, zs_pocket |
|
|
|
|
|
def sample_combined_position_feature_noise(self, lig_indices, |
|
|
pocket_indices): |
|
|
""" |
|
|
Samples mean-centered normal noise for z_x, and standard normal noise |
|
|
for z_h. |
|
|
""" |
|
|
z_x = self.sample_center_gravity_zero_gaussian_batch( |
|
|
size=(len(lig_indices) + len(pocket_indices), self.n_dims), |
|
|
lig_indices=lig_indices, |
|
|
pocket_indices=pocket_indices |
|
|
) |
|
|
z_h_lig = self.sample_gaussian( |
|
|
size=(len(lig_indices), self.atom_nf), |
|
|
device=lig_indices.device) |
|
|
z_lig = torch.cat([z_x[:len(lig_indices)], z_h_lig], dim=1) |
|
|
z_h_pocket = self.sample_gaussian( |
|
|
size=(len(pocket_indices), self.residue_nf), |
|
|
device=pocket_indices.device) |
|
|
z_pocket = torch.cat([z_x[len(lig_indices):], z_h_pocket], dim=1) |
|
|
return z_lig, z_pocket |
|
|
|
|
|
@torch.no_grad() |
|
|
def sample(self, n_samples, num_nodes_lig, num_nodes_pocket, |
|
|
return_frames=1, timesteps=None, device='cpu'): |
|
|
""" |
|
|
Draw samples from the generative model. Optionally, return intermediate |
|
|
states for visualization purposes. |
|
|
""" |
|
|
timesteps = self.T if timesteps is None else timesteps |
|
|
assert 0 < return_frames <= timesteps |
|
|
assert timesteps % return_frames == 0 |
|
|
|
|
|
lig_mask = utils.num_nodes_to_batch_mask(n_samples, num_nodes_lig, |
|
|
device) |
|
|
pocket_mask = utils.num_nodes_to_batch_mask(n_samples, num_nodes_pocket, |
|
|
device) |
|
|
|
|
|
combined_mask = torch.cat((lig_mask, pocket_mask)) |
|
|
|
|
|
z_lig, z_pocket = self.sample_combined_position_feature_noise( |
|
|
lig_mask, pocket_mask) |
|
|
|
|
|
self.assert_mean_zero_with_mask( |
|
|
torch.cat((z_lig[:, :self.n_dims], z_pocket[:, :self.n_dims]), dim=0), |
|
|
combined_mask |
|
|
) |
|
|
|
|
|
out_lig = torch.zeros((return_frames,) + z_lig.size(), |
|
|
device=z_lig.device) |
|
|
out_pocket = torch.zeros((return_frames,) + z_pocket.size(), |
|
|
device=z_pocket.device) |
|
|
|
|
|
|
|
|
for s in reversed(range(0, timesteps)): |
|
|
s_array = torch.full((n_samples, 1), fill_value=s, |
|
|
device=z_lig.device) |
|
|
t_array = s_array + 1 |
|
|
s_array = s_array / timesteps |
|
|
t_array = t_array / timesteps |
|
|
|
|
|
z_lig, z_pocket = self.sample_p_zs_given_zt( |
|
|
s_array, t_array, z_lig, z_pocket, lig_mask, pocket_mask) |
|
|
|
|
|
|
|
|
if (s * return_frames) % timesteps == 0: |
|
|
idx = (s * return_frames) // timesteps |
|
|
out_lig[idx], out_pocket[idx] = \ |
|
|
self.unnormalize_z(z_lig, z_pocket) |
|
|
|
|
|
|
|
|
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0( |
|
|
z_lig, z_pocket, lig_mask, pocket_mask, n_samples) |
|
|
|
|
|
self.assert_mean_zero_with_mask( |
|
|
torch.cat((x_lig, x_pocket), dim=0), combined_mask |
|
|
) |
|
|
|
|
|
|
|
|
if return_frames == 1: |
|
|
x = torch.cat((x_lig, x_pocket)) |
|
|
max_cog = scatter_add(x, combined_mask, dim=0).abs().max().item() |
|
|
if max_cog > 5e-2: |
|
|
print(f'Warning CoG drift with error {max_cog:.3f}. Projecting ' |
|
|
f'the positions down.') |
|
|
x = self.remove_mean_batch(x, combined_mask) |
|
|
x_lig, x_pocket = x[:len(x_lig)], x[len(x_lig):] |
|
|
|
|
|
|
|
|
out_lig[0] = torch.cat([x_lig, h_lig], dim=1) |
|
|
out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1) |
|
|
|
|
|
|
|
|
return out_lig.squeeze(0), out_pocket.squeeze(0), lig_mask, pocket_mask |
|
|
|
|
|
def get_repaint_schedule(self, resamplings, jump_length, timesteps): |
|
|
""" Each integer in the schedule list describes how many denoising steps |
|
|
need to be applied before jumping back """ |
|
|
repaint_schedule = [] |
|
|
curr_t = 0 |
|
|
while curr_t < timesteps: |
|
|
if curr_t + jump_length < timesteps: |
|
|
if len(repaint_schedule) > 0: |
|
|
repaint_schedule[-1] += jump_length |
|
|
repaint_schedule.extend([jump_length] * (resamplings - 1)) |
|
|
else: |
|
|
repaint_schedule.extend([jump_length] * resamplings) |
|
|
curr_t += jump_length |
|
|
else: |
|
|
residual = (timesteps - curr_t) |
|
|
if len(repaint_schedule) > 0: |
|
|
repaint_schedule[-1] += residual |
|
|
else: |
|
|
repaint_schedule.append(residual) |
|
|
curr_t += residual |
|
|
|
|
|
return list(reversed(repaint_schedule)) |
|
|
|
|
|
@torch.no_grad() |
|
|
def inpaint(self, ligand, pocket, lig_fixed, pocket_fixed, resamplings=1, |
|
|
jump_length=1, return_frames=1, timesteps=None): |
|
|
""" |
|
|
Draw samples from the generative model while fixing parts of the input. |
|
|
Optionally, return intermediate states for visualization purposes. |
|
|
See: |
|
|
Lugmayr, Andreas, et al. |
|
|
"Repaint: Inpainting using denoising diffusion probabilistic models." |
|
|
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern |
|
|
Recognition. 2022. |
|
|
""" |
|
|
timesteps = self.T if timesteps is None else timesteps |
|
|
assert 0 < return_frames <= timesteps |
|
|
assert timesteps % return_frames == 0 |
|
|
assert jump_length == 1 or return_frames == 1, \ |
|
|
"Chain visualization is only implemented for jump_length=1" |
|
|
|
|
|
if len(lig_fixed.size()) == 1: |
|
|
lig_fixed = lig_fixed.unsqueeze(1) |
|
|
if len(pocket_fixed.size()) == 1: |
|
|
pocket_fixed = pocket_fixed.unsqueeze(1) |
|
|
|
|
|
ligand, pocket = self.normalize(ligand, pocket) |
|
|
|
|
|
n_samples = len(ligand['size']) |
|
|
combined_mask = torch.cat((ligand['mask'], pocket['mask'])) |
|
|
xh0_lig = torch.cat([ligand['x'], ligand['one_hot']], dim=1) |
|
|
xh0_pocket = torch.cat([pocket['x'], pocket['one_hot']], dim=1) |
|
|
|
|
|
|
|
|
mean_known = scatter_mean( |
|
|
torch.cat((ligand['x'][lig_fixed.bool().view(-1)], |
|
|
pocket['x'][pocket_fixed.bool().view(-1)])), |
|
|
torch.cat((ligand['mask'][lig_fixed.bool().view(-1)], |
|
|
pocket['mask'][pocket_fixed.bool().view(-1)])), |
|
|
dim=0 |
|
|
) |
|
|
xh0_lig[:, :self.n_dims] = \ |
|
|
xh0_lig[:, :self.n_dims] - mean_known[ligand['mask']] |
|
|
xh0_pocket[:, :self.n_dims] = \ |
|
|
xh0_pocket[:, :self.n_dims] - mean_known[pocket['mask']] |
|
|
|
|
|
|
|
|
z_lig, z_pocket = self.sample_combined_position_feature_noise( |
|
|
ligand['mask'], pocket['mask']) |
|
|
|
|
|
|
|
|
out_lig = torch.zeros((return_frames,) + z_lig.size(), |
|
|
device=z_lig.device) |
|
|
out_pocket = torch.zeros((return_frames,) + z_pocket.size(), |
|
|
device=z_pocket.device) |
|
|
|
|
|
|
|
|
schedule = self.get_repaint_schedule(resamplings, jump_length, timesteps) |
|
|
s = timesteps - 1 |
|
|
for i, n_denoise_steps in enumerate(schedule): |
|
|
for j in range(n_denoise_steps): |
|
|
|
|
|
s_array = torch.full((n_samples, 1), fill_value=s, |
|
|
device=z_lig.device) |
|
|
t_array = s_array + 1 |
|
|
s_array = s_array / timesteps |
|
|
t_array = t_array / timesteps |
|
|
|
|
|
|
|
|
gamma_s = self.inflate_batch_array(self.gamma(s_array), |
|
|
ligand['x']) |
|
|
z_lig_known, z_pocket_known, _, _ = self.noised_representation( |
|
|
xh0_lig, xh0_pocket, ligand['mask'], pocket['mask'], gamma_s) |
|
|
|
|
|
|
|
|
z_lig_unknown, z_pocket_unknown = self.sample_p_zs_given_zt( |
|
|
s_array, t_array, z_lig, z_pocket, ligand['mask'], |
|
|
pocket['mask']) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
com_noised = scatter_mean( |
|
|
torch.cat((z_lig_known[:, :self.n_dims][lig_fixed.bool().view(-1)], |
|
|
z_pocket_known[:, :self.n_dims][pocket_fixed.bool().view(-1)])), |
|
|
torch.cat((ligand['mask'][lig_fixed.bool().view(-1)], |
|
|
pocket['mask'][pocket_fixed.bool().view(-1)])), |
|
|
dim=0 |
|
|
) |
|
|
com_denoised = scatter_mean( |
|
|
torch.cat((z_lig_unknown[:, :self.n_dims][lig_fixed.bool().view(-1)], |
|
|
z_pocket_unknown[:, :self.n_dims][pocket_fixed.bool().view(-1)])), |
|
|
torch.cat((ligand['mask'][lig_fixed.bool().view(-1)], |
|
|
pocket['mask'][pocket_fixed.bool().view(-1)])), |
|
|
dim=0 |
|
|
) |
|
|
z_lig_known[:, :self.n_dims] = \ |
|
|
z_lig_known[:, :self.n_dims] + (com_denoised - com_noised)[ligand['mask']] |
|
|
z_pocket_known[:, :self.n_dims] = \ |
|
|
z_pocket_known[:, :self.n_dims] + (com_denoised - com_noised)[pocket['mask']] |
|
|
|
|
|
|
|
|
z_lig = z_lig_known * lig_fixed + \ |
|
|
z_lig_unknown * (1 - lig_fixed) |
|
|
z_pocket = z_pocket_known * pocket_fixed + \ |
|
|
z_pocket_unknown * (1 - pocket_fixed) |
|
|
|
|
|
self.assert_mean_zero_with_mask( |
|
|
torch.cat((z_lig[:, :self.n_dims], |
|
|
z_pocket[:, :self.n_dims]), dim=0), combined_mask |
|
|
) |
|
|
|
|
|
|
|
|
if n_denoise_steps > jump_length or i == len(schedule) - 1: |
|
|
if (s * return_frames) % timesteps == 0: |
|
|
idx = (s * return_frames) // timesteps |
|
|
out_lig[idx], out_pocket[idx] = \ |
|
|
self.unnormalize_z(z_lig, z_pocket) |
|
|
|
|
|
|
|
|
if j == n_denoise_steps - 1 and i < len(schedule) - 1: |
|
|
|
|
|
t = s + jump_length |
|
|
t_array = torch.full((n_samples, 1), fill_value=t, |
|
|
device=z_lig.device) |
|
|
t_array = t_array / timesteps |
|
|
|
|
|
gamma_s = self.inflate_batch_array(self.gamma(s_array), |
|
|
ligand['x']) |
|
|
gamma_t = self.inflate_batch_array(self.gamma(t_array), |
|
|
ligand['x']) |
|
|
|
|
|
z_lig, z_pocket = self.sample_p_zt_given_zs( |
|
|
z_lig, z_pocket, ligand['mask'], pocket['mask'], |
|
|
gamma_t, gamma_s) |
|
|
|
|
|
s = t |
|
|
|
|
|
s -= 1 |
|
|
|
|
|
|
|
|
x_lig, h_lig, x_pocket, h_pocket = self.sample_p_xh_given_z0( |
|
|
z_lig, z_pocket, ligand['mask'], pocket['mask'], n_samples) |
|
|
|
|
|
self.assert_mean_zero_with_mask( |
|
|
torch.cat((x_lig, x_pocket), dim=0), combined_mask |
|
|
) |
|
|
|
|
|
|
|
|
if return_frames == 1: |
|
|
x = torch.cat((x_lig, x_pocket)) |
|
|
max_cog = scatter_add(x, combined_mask, dim=0).abs().max().item() |
|
|
if max_cog > 5e-2: |
|
|
print(f'Warning CoG drift with error {max_cog:.3f}. Projecting ' |
|
|
f'the positions down.') |
|
|
x = self.remove_mean_batch(x, combined_mask) |
|
|
x_lig, x_pocket = x[:len(x_lig)], x[len(x_lig):] |
|
|
|
|
|
|
|
|
out_lig[0] = torch.cat([x_lig, h_lig], dim=1) |
|
|
out_pocket[0] = torch.cat([x_pocket, h_pocket], dim=1) |
|
|
|
|
|
|
|
|
return out_lig.squeeze(0), out_pocket.squeeze(0), ligand['mask'], \ |
|
|
pocket['mask'] |
|
|
|
|
|
@staticmethod |
|
|
def gaussian_KL(q_mu_minus_p_mu_squared, q_sigma, p_sigma, d): |
|
|
"""Computes the KL distance between two normal distributions. |
|
|
Args: |
|
|
q_mu_minus_p_mu_squared: Squared difference between mean of |
|
|
distribution q and distribution p: ||mu_q - mu_p||^2 |
|
|
q_sigma: Standard deviation of distribution q. |
|
|
p_sigma: Standard deviation of distribution p. |
|
|
d: dimension |
|
|
Returns: |
|
|
The KL distance |
|
|
""" |
|
|
return d * torch.log(p_sigma / q_sigma) + \ |
|
|
0.5 * (d * q_sigma ** 2 + q_mu_minus_p_mu_squared) / \ |
|
|
(p_sigma ** 2) - 0.5 * d |
|
|
|
|
|
@staticmethod |
|
|
def inflate_batch_array(array, target): |
|
|
""" |
|
|
Inflates the batch array (array) with only a single axis |
|
|
(i.e. shape = (batch_size,), or possibly more empty axes |
|
|
(i.e. shape (batch_size, 1, ..., 1)) to match the target shape. |
|
|
""" |
|
|
target_shape = (array.size(0),) + (1,) * (len(target.size()) - 1) |
|
|
return array.view(target_shape) |
|
|
|
|
|
def sigma(self, gamma, target_tensor): |
|
|
"""Computes sigma given gamma.""" |
|
|
return self.inflate_batch_array(torch.sqrt(torch.sigmoid(gamma)), |
|
|
target_tensor) |
|
|
|
|
|
def alpha(self, gamma, target_tensor): |
|
|
"""Computes alpha given gamma.""" |
|
|
return self.inflate_batch_array(torch.sqrt(torch.sigmoid(-gamma)), |
|
|
target_tensor) |
|
|
|
|
|
@staticmethod |
|
|
def SNR(gamma): |
|
|
"""Computes signal to noise ratio (alpha^2/sigma^2) given gamma.""" |
|
|
return torch.exp(-gamma) |
|
|
|
|
|
def normalize(self, ligand=None, pocket=None): |
|
|
if ligand is not None: |
|
|
ligand['x'] = ligand['x'] / self.norm_values[0] |
|
|
|
|
|
|
|
|
ligand['one_hot'] = \ |
|
|
(ligand['one_hot'].float() - self.norm_biases[1]) / \ |
|
|
self.norm_values[1] |
|
|
|
|
|
if pocket is not None: |
|
|
pocket['x'] = pocket['x'] / self.norm_values[0] |
|
|
pocket['one_hot'] = \ |
|
|
(pocket['one_hot'].float() - self.norm_biases[1]) / \ |
|
|
self.norm_values[1] |
|
|
|
|
|
return ligand, pocket |
|
|
|
|
|
def unnormalize(self, x, h_cat): |
|
|
x = x * self.norm_values[0] |
|
|
h_cat = h_cat * self.norm_values[1] + self.norm_biases[1] |
|
|
|
|
|
return x, h_cat |
|
|
|
|
|
def unnormalize_z(self, z_lig, z_pocket): |
|
|
|
|
|
x_lig, h_lig = z_lig[:, :self.n_dims], z_lig[:, self.n_dims:] |
|
|
x_pocket, h_pocket = z_pocket[:, :self.n_dims], z_pocket[:, self.n_dims:] |
|
|
|
|
|
|
|
|
x_lig, h_lig = self.unnormalize(x_lig, h_lig) |
|
|
x_pocket, h_pocket = self.unnormalize(x_pocket, h_pocket) |
|
|
return torch.cat([x_lig, h_lig], dim=1), \ |
|
|
torch.cat([x_pocket, h_pocket], dim=1) |
|
|
|
|
|
def subspace_dimensionality(self, input_size): |
|
|
"""Compute the dimensionality on translation-invariant linear subspace |
|
|
where distributions on x are defined.""" |
|
|
return (input_size - 1) * self.n_dims |
|
|
|
|
|
@staticmethod |
|
|
def remove_mean_batch(x, indices): |
|
|
mean = scatter_mean(x, indices, dim=0) |
|
|
x = x - mean[indices] |
|
|
return x |
|
|
|
|
|
@staticmethod |
|
|
def assert_mean_zero_with_mask(x, node_mask, eps=1e-10): |
|
|
largest_value = x.abs().max().item() |
|
|
error = scatter_add(x, node_mask, dim=0).abs().max().item() |
|
|
rel_error = error / (largest_value + eps) |
|
|
assert rel_error < 1e-2, f'Mean is not zero, relative_error {rel_error}' |
|
|
|
|
|
@staticmethod |
|
|
def sample_center_gravity_zero_gaussian_batch(size, lig_indices, |
|
|
pocket_indices): |
|
|
assert len(size) == 2 |
|
|
x = torch.randn(size, device=lig_indices.device) |
|
|
|
|
|
|
|
|
|
|
|
x_projected = EnVariationalDiffusion.remove_mean_batch( |
|
|
x, torch.cat((lig_indices, pocket_indices))) |
|
|
return x_projected |
|
|
|
|
|
@staticmethod |
|
|
def sum_except_batch(x, indices): |
|
|
return scatter_add(x.sum(-1), indices, dim=0) |
|
|
|
|
|
@staticmethod |
|
|
def cdf_standard_gaussian(x): |
|
|
return 0.5 * (1. + torch.erf(x / math.sqrt(2))) |
|
|
|
|
|
@staticmethod |
|
|
def sample_gaussian(size, device): |
|
|
x = torch.randn(size, device=device) |
|
|
return x |
|
|
|
|
|
|
|
|
class DistributionNodes: |
|
|
def __init__(self, histogram): |
|
|
|
|
|
histogram = torch.tensor(histogram).float() |
|
|
histogram = histogram + 1e-3 |
|
|
|
|
|
prob = histogram / histogram.sum() |
|
|
|
|
|
self.idx_to_n_nodes = torch.tensor( |
|
|
[[(i, j) for j in range(prob.shape[1])] for i in range(prob.shape[0])] |
|
|
).view(-1, 2) |
|
|
|
|
|
self.n_nodes_to_idx = {tuple(x.tolist()): i |
|
|
for i, x in enumerate(self.idx_to_n_nodes)} |
|
|
|
|
|
self.prob = prob |
|
|
self.m = torch.distributions.Categorical(self.prob.view(-1), |
|
|
validate_args=True) |
|
|
|
|
|
self.n1_given_n2 = \ |
|
|
[torch.distributions.Categorical(prob[:, j], validate_args=True) |
|
|
for j in range(prob.shape[1])] |
|
|
self.n2_given_n1 = \ |
|
|
[torch.distributions.Categorical(prob[i, :], validate_args=True) |
|
|
for i in range(prob.shape[0])] |
|
|
|
|
|
|
|
|
entropy = self.m.entropy() |
|
|
print("Entropy of n_nodes: H[N]", entropy.item()) |
|
|
|
|
|
def sample(self, n_samples=1): |
|
|
idx = self.m.sample((n_samples,)) |
|
|
num_nodes_lig, num_nodes_pocket = self.idx_to_n_nodes[idx].T |
|
|
return num_nodes_lig, num_nodes_pocket |
|
|
|
|
|
def sample_conditional(self, n1=None, n2=None): |
|
|
assert (n1 is None) ^ (n2 is None), \ |
|
|
"Exactly one input argument must be None" |
|
|
|
|
|
m = self.n1_given_n2 if n2 is not None else self.n2_given_n1 |
|
|
c = n2 if n2 is not None else n1 |
|
|
|
|
|
return torch.tensor([m[i].sample() for i in c], device=c.device) |
|
|
|
|
|
def log_prob(self, batch_n_nodes_1, batch_n_nodes_2): |
|
|
assert len(batch_n_nodes_1.size()) == 1 |
|
|
assert len(batch_n_nodes_2.size()) == 1 |
|
|
|
|
|
idx = torch.tensor( |
|
|
[self.n_nodes_to_idx[(n1, n2)] |
|
|
for n1, n2 in zip(batch_n_nodes_1.tolist(), batch_n_nodes_2.tolist())] |
|
|
) |
|
|
|
|
|
|
|
|
log_probs = self.m.log_prob(idx) |
|
|
|
|
|
return log_probs.to(batch_n_nodes_1.device) |
|
|
|
|
|
def log_prob_n1_given_n2(self, n1, n2): |
|
|
assert len(n1.size()) == 1 |
|
|
assert len(n2.size()) == 1 |
|
|
log_probs = torch.stack([self.n1_given_n2[c].log_prob(i.cpu()) |
|
|
for i, c in zip(n1, n2)]) |
|
|
return log_probs.to(n1.device) |
|
|
|
|
|
def log_prob_n2_given_n1(self, n2, n1): |
|
|
assert len(n2.size()) == 1 |
|
|
assert len(n1.size()) == 1 |
|
|
log_probs = torch.stack([self.n2_given_n1[c].log_prob(i.cpu()) |
|
|
for i, c in zip(n2, n1)]) |
|
|
return log_probs.to(n2.device) |
|
|
|
|
|
|
|
|
class PositiveLinear(torch.nn.Module): |
|
|
"""Linear layer with weights forced to be positive.""" |
|
|
|
|
|
def __init__(self, in_features: int, out_features: int, bias: bool = True, |
|
|
weight_init_offset: int = -2): |
|
|
super(PositiveLinear, self).__init__() |
|
|
self.in_features = in_features |
|
|
self.out_features = out_features |
|
|
self.weight = torch.nn.Parameter( |
|
|
torch.empty((out_features, in_features))) |
|
|
if bias: |
|
|
self.bias = torch.nn.Parameter(torch.empty(out_features)) |
|
|
else: |
|
|
self.register_parameter('bias', None) |
|
|
self.weight_init_offset = weight_init_offset |
|
|
self.reset_parameters() |
|
|
|
|
|
def reset_parameters(self) -> None: |
|
|
torch.nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5)) |
|
|
|
|
|
with torch.no_grad(): |
|
|
self.weight.add_(self.weight_init_offset) |
|
|
|
|
|
if self.bias is not None: |
|
|
fan_in, _ = torch.nn.init._calculate_fan_in_and_fan_out(self.weight) |
|
|
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0 |
|
|
torch.nn.init.uniform_(self.bias, -bound, bound) |
|
|
|
|
|
def forward(self, input): |
|
|
positive_weight = F.softplus(self.weight) |
|
|
return F.linear(input, positive_weight, self.bias) |
|
|
|
|
|
|
|
|
class GammaNetwork(torch.nn.Module): |
|
|
"""The gamma network models a monotonic increasing function. |
|
|
Construction as in the VDM paper.""" |
|
|
def __init__(self): |
|
|
super().__init__() |
|
|
|
|
|
self.l1 = PositiveLinear(1, 1) |
|
|
self.l2 = PositiveLinear(1, 1024) |
|
|
self.l3 = PositiveLinear(1024, 1) |
|
|
|
|
|
self.gamma_0 = torch.nn.Parameter(torch.tensor([-5.])) |
|
|
self.gamma_1 = torch.nn.Parameter(torch.tensor([10.])) |
|
|
self.show_schedule() |
|
|
|
|
|
def show_schedule(self, num_steps=50): |
|
|
t = torch.linspace(0, 1, num_steps).view(num_steps, 1) |
|
|
gamma = self.forward(t) |
|
|
print('Gamma schedule:') |
|
|
print(gamma.detach().cpu().numpy().reshape(num_steps)) |
|
|
|
|
|
def gamma_tilde(self, t): |
|
|
l1_t = self.l1(t) |
|
|
return l1_t + self.l3(torch.sigmoid(self.l2(l1_t))) |
|
|
|
|
|
def forward(self, t): |
|
|
zeros, ones = torch.zeros_like(t), torch.ones_like(t) |
|
|
|
|
|
gamma_tilde_0 = self.gamma_tilde(zeros) |
|
|
gamma_tilde_1 = self.gamma_tilde(ones) |
|
|
gamma_tilde_t = self.gamma_tilde(t) |
|
|
|
|
|
|
|
|
normalized_gamma = (gamma_tilde_t - gamma_tilde_0) / ( |
|
|
gamma_tilde_1 - gamma_tilde_0) |
|
|
|
|
|
|
|
|
gamma = self.gamma_0 + (self.gamma_1 - self.gamma_0) * normalized_gamma |
|
|
|
|
|
return gamma |
|
|
|
|
|
|
|
|
def cosine_beta_schedule(timesteps, s=0.008, raise_to_power: float = 1): |
|
|
""" |
|
|
cosine schedule |
|
|
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ |
|
|
""" |
|
|
steps = timesteps + 2 |
|
|
x = np.linspace(0, steps, steps) |
|
|
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2 |
|
|
alphas_cumprod = alphas_cumprod / alphas_cumprod[0] |
|
|
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1]) |
|
|
betas = np.clip(betas, a_min=0, a_max=0.999) |
|
|
alphas = 1. - betas |
|
|
alphas_cumprod = np.cumprod(alphas, axis=0) |
|
|
|
|
|
if raise_to_power != 1: |
|
|
alphas_cumprod = np.power(alphas_cumprod, raise_to_power) |
|
|
|
|
|
return alphas_cumprod |
|
|
|
|
|
|
|
|
def clip_noise_schedule(alphas2, clip_value=0.001): |
|
|
""" |
|
|
For a noise schedule given by alpha^2, this clips alpha_t / alpha_t-1. |
|
|
This may help improve stability during |
|
|
sampling. |
|
|
""" |
|
|
alphas2 = np.concatenate([np.ones(1), alphas2], axis=0) |
|
|
|
|
|
alphas_step = (alphas2[1:] / alphas2[:-1]) |
|
|
|
|
|
alphas_step = np.clip(alphas_step, a_min=clip_value, a_max=1.) |
|
|
alphas2 = np.cumprod(alphas_step, axis=0) |
|
|
|
|
|
return alphas2 |
|
|
|
|
|
|
|
|
def polynomial_schedule(timesteps: int, s=1e-4, power=3.): |
|
|
""" |
|
|
A noise schedule based on a simple polynomial equation: 1 - x^power. |
|
|
""" |
|
|
steps = timesteps + 1 |
|
|
x = np.linspace(0, steps, steps) |
|
|
alphas2 = (1 - np.power(x / steps, power))**2 |
|
|
|
|
|
alphas2 = clip_noise_schedule(alphas2, clip_value=0.001) |
|
|
|
|
|
precision = 1 - 2 * s |
|
|
|
|
|
alphas2 = precision * alphas2 + s |
|
|
|
|
|
return alphas2 |
|
|
|
|
|
|
|
|
class PredefinedNoiseSchedule(torch.nn.Module): |
|
|
""" |
|
|
Predefined noise schedule. Essentially creates a lookup array for predefined |
|
|
(non-learned) noise schedules. |
|
|
""" |
|
|
def __init__(self, noise_schedule, timesteps, precision): |
|
|
super(PredefinedNoiseSchedule, self).__init__() |
|
|
self.timesteps = timesteps |
|
|
|
|
|
if noise_schedule == 'cosine': |
|
|
alphas2 = cosine_beta_schedule(timesteps) |
|
|
elif 'polynomial' in noise_schedule: |
|
|
splits = noise_schedule.split('_') |
|
|
assert len(splits) == 2 |
|
|
power = float(splits[1]) |
|
|
alphas2 = polynomial_schedule(timesteps, s=precision, power=power) |
|
|
else: |
|
|
raise ValueError(noise_schedule) |
|
|
|
|
|
sigmas2 = 1 - alphas2 |
|
|
|
|
|
log_alphas2 = np.log(alphas2) |
|
|
log_sigmas2 = np.log(sigmas2) |
|
|
|
|
|
log_alphas2_to_sigmas2 = log_alphas2 - log_sigmas2 |
|
|
|
|
|
self.gamma = torch.nn.Parameter( |
|
|
torch.from_numpy(-log_alphas2_to_sigmas2).float(), |
|
|
requires_grad=False) |
|
|
|
|
|
def forward(self, t): |
|
|
t_int = torch.round(t * self.timesteps).long() |
|
|
return self.gamma[t_int] |
|
|
|