morganchen1007 commited on
Commit
67d20ea
1 Parent(s): f43e785

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gpl-3.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: bert-base-chinese-finetuned-ner_0220_J_ORIDATA_FULL_NOMOD
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # bert-base-chinese-finetuned-ner_0220_J_ORIDATA_FULL_NOMOD
19
+
20
+ This model is a fine-tuned version of [ckiplab/bert-base-chinese-ner](https://huggingface.co/ckiplab/bert-base-chinese-ner) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.3786
23
+ - Precision: 0.9357
24
+ - Recall: 0.9657
25
+ - F1: 0.9504
26
+ - Accuracy: 0.9577
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 2
47
+ - eval_batch_size: 2
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.0925 | 1.0 | 5358 | 0.2337 | 0.9246 | 0.9655 | 0.9446 | 0.9554 |
58
+ | 0.0787 | 2.0 | 10716 | 0.2506 | 0.9208 | 0.9588 | 0.9394 | 0.9525 |
59
+ | 0.0606 | 3.0 | 16074 | 0.2914 | 0.9309 | 0.9621 | 0.9462 | 0.9537 |
60
+ | 0.0543 | 4.0 | 21432 | 0.2792 | 0.9248 | 0.9633 | 0.9437 | 0.9553 |
61
+ | 0.056 | 5.0 | 26790 | 0.3064 | 0.9332 | 0.9645 | 0.9486 | 0.9563 |
62
+ | 0.0384 | 6.0 | 32148 | 0.3317 | 0.9347 | 0.9632 | 0.9487 | 0.9564 |
63
+ | 0.0265 | 7.0 | 37506 | 0.3340 | 0.9342 | 0.9667 | 0.9502 | 0.9568 |
64
+ | 0.03 | 8.0 | 42864 | 0.3460 | 0.9363 | 0.9641 | 0.9500 | 0.9558 |
65
+ | 0.0192 | 9.0 | 48222 | 0.3649 | 0.9357 | 0.9651 | 0.9501 | 0.9576 |
66
+ | 0.0117 | 10.0 | 53580 | 0.3786 | 0.9357 | 0.9657 | 0.9504 | 0.9577 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.20.1
72
+ - Pytorch 1.13.0+cu117
73
+ - Datasets 2.8.0
74
+ - Tokenizers 0.12.1