morganchen1007
commited on
Commit
•
67d20ea
1
Parent(s):
f43e785
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gpl-3.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: bert-base-chinese-finetuned-ner_0220_J_ORIDATA_FULL_NOMOD
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# bert-base-chinese-finetuned-ner_0220_J_ORIDATA_FULL_NOMOD
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [ckiplab/bert-base-chinese-ner](https://huggingface.co/ckiplab/bert-base-chinese-ner) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3786
|
23 |
+
- Precision: 0.9357
|
24 |
+
- Recall: 0.9657
|
25 |
+
- F1: 0.9504
|
26 |
+
- Accuracy: 0.9577
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 2
|
47 |
+
- eval_batch_size: 2
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.0925 | 1.0 | 5358 | 0.2337 | 0.9246 | 0.9655 | 0.9446 | 0.9554 |
|
58 |
+
| 0.0787 | 2.0 | 10716 | 0.2506 | 0.9208 | 0.9588 | 0.9394 | 0.9525 |
|
59 |
+
| 0.0606 | 3.0 | 16074 | 0.2914 | 0.9309 | 0.9621 | 0.9462 | 0.9537 |
|
60 |
+
| 0.0543 | 4.0 | 21432 | 0.2792 | 0.9248 | 0.9633 | 0.9437 | 0.9553 |
|
61 |
+
| 0.056 | 5.0 | 26790 | 0.3064 | 0.9332 | 0.9645 | 0.9486 | 0.9563 |
|
62 |
+
| 0.0384 | 6.0 | 32148 | 0.3317 | 0.9347 | 0.9632 | 0.9487 | 0.9564 |
|
63 |
+
| 0.0265 | 7.0 | 37506 | 0.3340 | 0.9342 | 0.9667 | 0.9502 | 0.9568 |
|
64 |
+
| 0.03 | 8.0 | 42864 | 0.3460 | 0.9363 | 0.9641 | 0.9500 | 0.9558 |
|
65 |
+
| 0.0192 | 9.0 | 48222 | 0.3649 | 0.9357 | 0.9651 | 0.9501 | 0.9576 |
|
66 |
+
| 0.0117 | 10.0 | 53580 | 0.3786 | 0.9357 | 0.9657 | 0.9504 | 0.9577 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.20.1
|
72 |
+
- Pytorch 1.13.0+cu117
|
73 |
+
- Datasets 2.8.0
|
74 |
+
- Tokenizers 0.12.1
|