morganchen1007 commited on
Commit
d7c944c
1 Parent(s): 8305cef

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gpl-3.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - precision
7
+ - recall
8
+ - f1
9
+ - accuracy
10
+ model-index:
11
+ - name: bert-base-chinese-finetuned-ner_0220_J_ORIDATA
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # bert-base-chinese-finetuned-ner_0220_J_ORIDATA
19
+
20
+ This model is a fine-tuned version of [ckiplab/bert-base-chinese-ner](https://huggingface.co/ckiplab/bert-base-chinese-ner) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.5830
23
+ - Precision: 0.9092
24
+ - Recall: 0.9508
25
+ - F1: 0.9296
26
+ - Accuracy: 0.9462
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 2
47
+ - eval_batch_size: 2
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
57
+ | 0.0277 | 1.0 | 884 | 0.5987 | 0.8694 | 0.9424 | 0.9044 | 0.9359 |
58
+ | 0.0373 | 2.0 | 1768 | 0.5396 | 0.8824 | 0.9475 | 0.9138 | 0.9452 |
59
+ | 0.027 | 3.0 | 2652 | 0.5509 | 0.8994 | 0.9398 | 0.9192 | 0.9459 |
60
+ | 0.0181 | 4.0 | 3536 | 0.5706 | 0.9006 | 0.9449 | 0.9222 | 0.9434 |
61
+ | 0.0144 | 5.0 | 4420 | 0.5605 | 0.9104 | 0.9466 | 0.9281 | 0.9462 |
62
+ | 0.011 | 6.0 | 5304 | 0.5323 | 0.8775 | 0.9466 | 0.9107 | 0.9382 |
63
+ | 0.0103 | 7.0 | 6188 | 0.5870 | 0.9073 | 0.9534 | 0.9298 | 0.9433 |
64
+ | 0.0065 | 8.0 | 7072 | 0.5986 | 0.9062 | 0.95 | 0.9276 | 0.9450 |
65
+ | 0.0098 | 9.0 | 7956 | 0.5794 | 0.9062 | 0.95 | 0.9276 | 0.9458 |
66
+ | 0.0032 | 10.0 | 8840 | 0.5830 | 0.9092 | 0.9508 | 0.9296 | 0.9462 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.20.1
72
+ - Pytorch 1.13.0+cu117
73
+ - Datasets 2.8.0
74
+ - Tokenizers 0.12.1