morganchen1007
commited on
Commit
•
d7c944c
1
Parent(s):
8305cef
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gpl-3.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: bert-base-chinese-finetuned-ner_0220_J_ORIDATA
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# bert-base-chinese-finetuned-ner_0220_J_ORIDATA
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [ckiplab/bert-base-chinese-ner](https://huggingface.co/ckiplab/bert-base-chinese-ner) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5830
|
23 |
+
- Precision: 0.9092
|
24 |
+
- Recall: 0.9508
|
25 |
+
- F1: 0.9296
|
26 |
+
- Accuracy: 0.9462
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 2
|
47 |
+
- eval_batch_size: 2
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.0277 | 1.0 | 884 | 0.5987 | 0.8694 | 0.9424 | 0.9044 | 0.9359 |
|
58 |
+
| 0.0373 | 2.0 | 1768 | 0.5396 | 0.8824 | 0.9475 | 0.9138 | 0.9452 |
|
59 |
+
| 0.027 | 3.0 | 2652 | 0.5509 | 0.8994 | 0.9398 | 0.9192 | 0.9459 |
|
60 |
+
| 0.0181 | 4.0 | 3536 | 0.5706 | 0.9006 | 0.9449 | 0.9222 | 0.9434 |
|
61 |
+
| 0.0144 | 5.0 | 4420 | 0.5605 | 0.9104 | 0.9466 | 0.9281 | 0.9462 |
|
62 |
+
| 0.011 | 6.0 | 5304 | 0.5323 | 0.8775 | 0.9466 | 0.9107 | 0.9382 |
|
63 |
+
| 0.0103 | 7.0 | 6188 | 0.5870 | 0.9073 | 0.9534 | 0.9298 | 0.9433 |
|
64 |
+
| 0.0065 | 8.0 | 7072 | 0.5986 | 0.9062 | 0.95 | 0.9276 | 0.9450 |
|
65 |
+
| 0.0098 | 9.0 | 7956 | 0.5794 | 0.9062 | 0.95 | 0.9276 | 0.9458 |
|
66 |
+
| 0.0032 | 10.0 | 8840 | 0.5830 | 0.9092 | 0.9508 | 0.9296 | 0.9462 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.20.1
|
72 |
+
- Pytorch 1.13.0+cu117
|
73 |
+
- Datasets 2.8.0
|
74 |
+
- Tokenizers 0.12.1
|