moranyanuka
commited on
Commit
·
4eaa10c
1
Parent(s):
51ae538
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,123 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
# Mocha Checkpoint for BLIP-Large Model
|
5 |
+
|
6 |
+
The official checkpoint of BLIP-Large model, finetuned on MS-COCO with the MOCHa RL frameword, introduced in [MOCHa: Multi-Objective Reinforcement Mitigating Caption Hallucinations](https://arxiv.org/pdf/2312.03631.pdf)
|
7 |
+
|
8 |
+
[Project Page](https://assafbk.github.io/mocha/)
|
9 |
+
|
10 |
+
## Usage
|
11 |
+
|
12 |
+
You can use this model for conditional and un-conditional image captioning
|
13 |
+
|
14 |
+
### Using the Pytorch model
|
15 |
+
|
16 |
+
#### Running the model on CPU
|
17 |
+
|
18 |
+
<details>
|
19 |
+
<summary> Click to expand </summary>
|
20 |
+
|
21 |
+
```python
|
22 |
+
import requests
|
23 |
+
from PIL import Image
|
24 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
25 |
+
|
26 |
+
processor = BlipProcessor.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
|
27 |
+
model = BlipForConditionalGeneration.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
|
28 |
+
|
29 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
30 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
31 |
+
|
32 |
+
# conditional image captioning
|
33 |
+
text = "a photography of"
|
34 |
+
inputs = processor(raw_image, text, return_tensors="pt")
|
35 |
+
|
36 |
+
out = model.generate(**inputs)
|
37 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
38 |
+
|
39 |
+
# unconditional image captioning
|
40 |
+
inputs = processor(raw_image, return_tensors="pt")
|
41 |
+
|
42 |
+
out = model.generate(**inputs)
|
43 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
44 |
+
```
|
45 |
+
</details>
|
46 |
+
|
47 |
+
#### Running the model on GPU
|
48 |
+
|
49 |
+
##### In full precision
|
50 |
+
|
51 |
+
<details>
|
52 |
+
<summary> Click to expand </summary>
|
53 |
+
|
54 |
+
```python
|
55 |
+
import requests
|
56 |
+
from PIL import Image
|
57 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
58 |
+
|
59 |
+
processor = BlipProcessor.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
|
60 |
+
model = BlipForConditionalGeneration.from_pretrained("moranyanuka/blip-image-captioning-large-mocha").to("cuda")
|
61 |
+
|
62 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
63 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
64 |
+
|
65 |
+
# conditional image captioning
|
66 |
+
text = "a photography of"
|
67 |
+
inputs = processor(raw_image, text, return_tensors="pt").to("cuda")
|
68 |
+
|
69 |
+
out = model.generate(**inputs)
|
70 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
71 |
+
|
72 |
+
# unconditional image captioning
|
73 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda")
|
74 |
+
|
75 |
+
out = model.generate(**inputs)
|
76 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
77 |
+
```
|
78 |
+
</details>
|
79 |
+
|
80 |
+
##### In half precision (`float16`)
|
81 |
+
|
82 |
+
<details>
|
83 |
+
<summary> Click to expand </summary>
|
84 |
+
|
85 |
+
```python
|
86 |
+
import torch
|
87 |
+
import requests
|
88 |
+
from PIL import Image
|
89 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
90 |
+
|
91 |
+
processor = BlipProcessor.from_pretrained("moranyanuka/blip-image-captioning-large-mocha")
|
92 |
+
model = BlipForConditionalGeneration.from_pretrained("moranyanuka/blip-image-captioning-large-mocha", torch_dtype=torch.float16).to("cuda")
|
93 |
+
|
94 |
+
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
|
95 |
+
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
|
96 |
+
|
97 |
+
# conditional image captioning
|
98 |
+
text = "a photography of"
|
99 |
+
inputs = processor(raw_image, text, return_tensors="pt").to("cuda", torch.float16)
|
100 |
+
|
101 |
+
out = model.generate(**inputs)
|
102 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
103 |
+
# >>> a photography of a woman and her dog
|
104 |
+
|
105 |
+
# unconditional image captioning
|
106 |
+
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
|
107 |
+
|
108 |
+
out = model.generate(**inputs)
|
109 |
+
print(processor.decode(out[0], skip_special_tokens=True))
|
110 |
+
>>> a woman sitting on the beach with her dog
|
111 |
+
```
|
112 |
+
</details>
|
113 |
+
|
114 |
+
bibtex:
|
115 |
+
```
|
116 |
+
@misc{benkish2023mocha,
|
117 |
+
title={MOCHa: Multi-Objective Reinforcement Mitigating Caption Hallucinations},
|
118 |
+
author={Assaf Ben-Kish and Moran Yanuka and Morris Alper and Raja Giryes and Hadar Averbuch-Elor},
|
119 |
+
year={2023},
|
120 |
+
eprint={2312.03631},
|
121 |
+
archivePrefix={arXiv},
|
122 |
+
primaryClass={cs.CV}
|
123 |
+
}
|