updated model 3 dec 2022
Browse files- README.md +9 -8
- config.json +1 -1
- plander-defaults.zip +3 -0
- plander-defaults/_stable_baselines3_version +1 -0
- plander-defaults/data +94 -0
- plander-defaults/policy.optimizer.pth +3 -0
- plander-defaults/policy.pth +3 -0
- plander-defaults/pytorch_variables.pth +3 -0
- plander-defaults/system_info.txt +7 -0
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -6,22 +6,23 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results:
|
11 |
-
-
|
12 |
-
- type: mean_reward
|
13 |
-
value: 118.66 +/- 90.54
|
14 |
-
name: mean_reward
|
15 |
-
task:
|
16 |
type: reinforcement-learning
|
17 |
name: reinforcement-learning
|
18 |
dataset:
|
19 |
name: LunarLander-v2
|
20 |
type: LunarLander-v2
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
-
# **
|
24 |
-
This is a trained model of a **
|
25 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
|
27 |
## Usage (with Stable-baselines3)
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: ppo
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: LunarLander-v2
|
16 |
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 172.04 +/- 90.74
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **ppo** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **ppo** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5cba90c8c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5cba90c950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5cba90c9e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5cba90ca70>", "_build": "<function ActorCriticPolicy._build at 0x7f5cba90cb00>", "forward": "<function ActorCriticPolicy.forward at 0x7f5cba90cb90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5cba90cc20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5cba90ccb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5cba90cd40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5cba90cdd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5cba90ce60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5cba8e24e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654779966.1158698, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAA9sG3PkVamD5PSEQ7yslsvodNtb3iKso9AAAAAAAAAADNVXm9w90zuvJFdzhcTqS1N8VzO2RvjbcAAIA/AACAP9YzYr6FEdo8C78XPM0fbroLTHC+6niHOwAAgD8AAIA/zXVpPj/MID/73ce+dDGovvttIz5aVqa+AAAAAAAAAAAzs6m6ony0P7JOBr6ayR29w4jFOpph8zwAAAAAAAAAALpUoD5pS0C8jqvhOcGkmLflV4G9NutmNAAAgD8AAIA/9vr3vrFv2T2DeVa92TAIvol6kz0gs1U9AAAAAAAAAAAGk6++PdZEvY4mVjrKDYQ4DmBbPhqOSLgAAIA/AACAP8CSdz54DaE8qsFCur02ubjxWzM+IHt0OQAAgD8AAIA/gDAkvfYYLbpqNoA7VSpztQYe57qjlJW6AACAPwAAgD/NPKS6rrmZusogqbpgnsO1acZdOtmEwDkAAIA/AACAP3b/WL57lOU3Nc15uvKkqTZHAg68WimROQAAgD8AAIA/muSGvFxHJboqQ+S7bVXlNggPJ7u9B1G2AACAPwAAgD8bW4++rvWlvLexgTv6/b85NREdPh+ioboAAIA/AACAPzM98bzDKWC6mtgEvMkAJzZn1sC5pt2TtQAAgD8AAIA/ZmzdPFyXYrrPqwc73kx4NgJnALt3+Rq6AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAABAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIndUCe0yKUsCUhpRSlIwBbJRL14wBdJRHQIO8BzYEnst1fZQoaAZoCWgPQwgMc4I2OV1UwJSGlFKUaBVLymgWR0CDxtzp5eJIdX2UKGgGaAloD0MIRnnm5bCFSECUhpRSlGgVTegDaBZHQIPJAnv2GqR1fZQoaAZoCWgPQwjJHMu76lNOQJSGlFKUaBVN6ANoFkdAg8rNayKNynV9lChoBmgJaA9DCCNL5ljeH0TAlIaUUpRoFUu3aBZHQIPO856t1ZF1fZQoaAZoCWgPQwirsBnggihsQJSGlFKUaBVNHgJoFkdAg9brYXfqHHV9lChoBmgJaA9DCMBeYcH9jFxAlIaUUpRoFU3oA2gWR0CD2taaCtihdX2UKGgGaAloD0MIJLn8h/QkWkCUhpRSlGgVTegDaBZHQIPdwxFiKBN1fZQoaAZoCWgPQwh1d50N+cdcQJSGlFKUaBVN6ANoFkdAg+CfrB0p3HV9lChoBmgJaA9DCH47iQj/l1PAlIaUUpRoFUvQaBZHQIPkkxyn1nN1fZQoaAZoCWgPQwjlnNhD+2ZkwJSGlFKUaBVNEQFoFkdAg+q/8dgfEHV9lChoBmgJaA9DCBrh7UEIXD1AlIaUUpRoFU3oA2gWR0CD7W2AG0NSdX2UKGgGaAloD0MIsvM2NjuQRkCUhpRSlGgVTegDaBZHQIP1DsniNsF1fZQoaAZoCWgPQwgNcayL2ygdwJSGlFKUaBVL2WgWR0CD93tE5QxfdX2UKGgGaAloD0MI6WM+INBPX0CUhpRSlGgVTegDaBZHQIP42dwvQF91fZQoaAZoCWgPQwjpK0gzFttDwJSGlFKUaBVLu2gWR0CEABybx3FDdX2UKGgGaAloD0MIE/HW+TcUZsCUhpRSlGgVTUgBaBZHQIQA/0AcT8J1fZQoaAZoCWgPQwjwplt2iD9gQJSGlFKUaBVN6ANoFkdAhAGJmukk8nV9lChoBmgJaA9DCD55WKg1mlFAlIaUUpRoFU3oA2gWR0CEAxU5MlC1dX2UKGgGaAloD0MI0CfyJOka+r+UhpRSlGgVS8NoFkdAhBelMIu5BnV9lChoBmgJaA9DCCKJXkaxD1XAlIaUUpRoFU1LAWgWR0CEHhCZ4Oc2dX2UKGgGaAloD0MI2o6pu7JBV0CUhpRSlGgVTegDaBZHQIQnMI/qxC91fZQoaAZoCWgPQwio4zEDldRQQJSGlFKUaBVN6ANoFkdAhCtFz2exwHV9lChoBmgJaA9DCBqiCn+GbzLAlIaUUpRoFU3SAWgWR0CEMjPrOZ9edX2UKGgGaAloD0MITBb3H5lyWUCUhpRSlGgVTegDaBZHQIRfQXKr7wd1fZQoaAZoCWgPQwiGkzR/zHFnQJSGlFKUaBVN6ANoFkdAhGlJdjXnQ3V9lChoBmgJaA9DCPVjk/yIH01AlIaUUpRoFU3oA2gWR0CEcnm4iHIqdX2UKGgGaAloD0MImE2AYflJWkCUhpRSlGgVTegDaBZHQIR83wEyLyd1fZQoaAZoCWgPQwgapOAp5NhcQJSGlFKUaBVN6ANoFkdAhIbm5lOGkHV9lChoBmgJaA9DCL4vLlVpj1ZAlIaUUpRoFU3oA2gWR0CEi0rbxmTUdX2UKGgGaAloD0MIfF9cqtKBVECUhpRSlGgVTegDaBZHQISUofSx7iR1fZQoaAZoCWgPQwhblq/L8Hs3wJSGlFKUaBVL4WgWR0CEmbC9AX2vdX2UKGgGaAloD0MIoQ+WsaF7YECUhpRSlGgVTegDaBZHQISc0hA4XGh1fZQoaAZoCWgPQwjH8UOlET9GQJSGlFKUaBVLsGgWR0CEnVSHdoFndX2UKGgGaAloD0MImKPH720JYkCUhpRSlGgVTegDaBZHQISpcgpz90l1fZQoaAZoCWgPQwjw+sxZnzolQJSGlFKUaBVN6ANoFkdAhKsQhfShJ3V9lChoBmgJaA9DCH8yxofZfzxAlIaUUpRoFU3oA2gWR0CErN8WsRxtdX2UKGgGaAloD0MIW7VrQlrnOkCUhpRSlGgVS+toFkdAhLW+i8FpwnV9lChoBmgJaA9DCOoI4Gbxh19AlIaUUpRoFU3oA2gWR0CEwmzAvcrRdX2UKGgGaAloD0MItHOaBdo1UkCUhpRSlGgVTegDaBZHQITInOryUcJ1fZQoaAZoCWgPQwiojlVKzxwrwJSGlFKUaBVL5GgWR0CEyTTwUg0TdX2UKGgGaAloD0MI2c2MfjTPYUCUhpRSlGgVTegDaBZHQITQqiZfD1p1fZQoaAZoCWgPQwgxlX7C2YBhQJSGlFKUaBVN6ANoFkdAhNSbNr0rb3V9lChoBmgJaA9DCKgZUkXxI1tAlIaUUpRoFU3oA2gWR0CE2uFXaJyidX2UKGgGaAloD0MIPPpfrkU1VUCUhpRSlGgVTegDaBZHQIUHkdFOO811fZQoaAZoCWgPQwgr+kMzT95LQJSGlFKUaBVN6ANoFkdAhRD6m4y44XV9lChoBmgJaA9DCGthFto5O1hAlIaUUpRoFU3oA2gWR0CFGHcv/R3NdX2UKGgGaAloD0MIlBXD1QFdXUCUhpRSlGgVTegDaBZHQIUvz+tKZlZ1fZQoaAZoCWgPQwjrO78oQb8pQJSGlFKUaBVL8GgWR0CFOaMKCxu9dX2UKGgGaAloD0MIP6n26XhcXECUhpRSlGgVTegDaBZHQIU661RceKd1fZQoaAZoCWgPQwjPvvIgPfZeQJSGlFKUaBVN6ANoFkdAhUQCWNWEK3V9lChoBmgJaA9DCAfQ7/s3LlxAlIaUUpRoFU3oA2gWR0CFRJHFPznSdX2UKGgGaAloD0MIlpf8T367YkCUhpRSlGgVTegDaBZHQIVRTGR3eN11fZQoaAZoCWgPQwgWhV0UPcdbQJSGlFKUaBVN6ANoFkdAhVL1z6rNn3V9lChoBmgJaA9DCFSthVloVzdAlIaUUpRoFUv3aBZHQIVaNLamGdt1fZQoaAZoCWgPQwjX2ZB/Zig3QJSGlFKUaBVN6ANoFkdAhV7I371qWXV9lChoBmgJaA9DCAL1ZtR8/TrAlIaUUpRoFUu8aBZHQIVo+O801qF1fZQoaAZoCWgPQwgn3gGetExVQJSGlFKUaBVN6ANoFkdAhWsDcM3IdXV9lChoBmgJaA9DCJrudVLfA2NAlIaUUpRoFU3oA2gWR0CFcYkxh2GJdX2UKGgGaAloD0MIzcr2IW97XECUhpRSlGgVTegDaBZHQIVyMEs8PnV1fZQoaAZoCWgPQwjZeLDFbnZjQJSGlFKUaBVN6ANoFkdAhXoBdMTN+3V9lChoBmgJaA9DCLnhd9Mthl1AlIaUUpRoFU3oA2gWR0CFfcwxFiKBdX2UKGgGaAloD0MIJ2w/GWMcYkCUhpRSlGgVTegDaBZHQIWEEhFEy+J1fZQoaAZoCWgPQwj8cma7QkpbQJSGlFKUaBVN6ANoFkdAhYnGsV+I/XV9lChoBmgJaA9DCEvqBDQRuEnAlIaUUpRoFU0PAWgWR0CFtDMJx//edX2UKGgGaAloD0MIlnuBWSE0YECUhpRSlGgVTegDaBZHQIW6O7cwg1Z1fZQoaAZoCWgPQwiAnDBhNGpQwJSGlFKUaBVNpAFoFkdAhcxFU6xPf3V9lChoBmgJaA9DCBPvAE/a9mNAlIaUUpRoFU3oA2gWR0CF2NZeRgZ1dX2UKGgGaAloD0MIfAqA8QzSWUCUhpRSlGgVTegDaBZHQIXiwnfEXLx1fZQoaAZoCWgPQwgyyjMvh7ZhQJSGlFKUaBVN6ANoFkdAhes10tAcDXV9lChoBmgJaA9DCK66DtWUL1lAlIaUUpRoFU3oA2gWR0CF67tAs053dX2UKGgGaAloD0MIf4eiQB+JYUCUhpRSlGgVTegDaBZHQIX5iVMVUMp1fZQoaAZoCWgPQwjTad0GNZdmQJSGlFKUaBVN6ANoFkdAhgEgMMI/q3V9lChoBmgJaA9DCD3UtmEUOkhAlIaUUpRoFU3oA2gWR0CGBYlzltCRdX2UKGgGaAloD0MIdLSqJR35T8CUhpRSlGgVTY8CaBZHQIYH9q33HrB1fZQoaAZoCWgPQwh5kQn4NUNhQJSGlFKUaBVN6ANoFkdAhg86h6By0nV9lChoBmgJaA9DCKg5eZEJqV1AlIaUUpRoFU3oA2gWR0CGGAl54W1udX2UKGgGaAloD0MINqs+V1tyVECUhpRSlGgVTegDaBZHQIYgALPUrkN1fZQoaAZoCWgPQwixNPCjGiJLQJSGlFKUaBVN6ANoFkdAhiP/oaDPGHV9lChoBmgJaA9DCOkPzTy5djTAlIaUUpRoFUv0aBZHQIYk3f4yoGZ1fZQoaAZoCWgPQwgI5BJHHuA9QJSGlFKUaBVN6ANoFkdAhipkUbkwOHV9lChoBmgJaA9DCAYP0765P1dAlIaUUpRoFU3oA2gWR0CGMBTLGJemdX2UKGgGaAloD0MIbXU5JSB+R8CUhpRSlGgVS/FoFkdAhl2OCwr1/XV9lChoBmgJaA9DCEbOwp72rmBAlIaUUpRoFU3oA2gWR0CGYNaMaS9vdX2UKGgGaAloD0MIelBQilau+b+UhpRSlGgVS8toFkdAhmOtbC79RHV9lChoBmgJaA9DCMgnZOdtIllAlIaUUpRoFU3oA2gWR0CGcraEBbOedX2UKGgGaAloD0MI7Z+nAYOjVUCUhpRSlGgVTegDaBZHQIZ/S3VkMCt1fZQoaAZoCWgPQwisAUpDjQZiQJSGlFKUaBVN6ANoFkdAhoo1kUbkwXV9lChoBmgJaA9DCPDd5o0TvGlAlIaUUpRoFU1hA2gWR0CGkPL127nQdX2UKGgGaAloD0MIwac5eRGsY0CUhpRSlGgVTegDaBZHQIaUNtl7MPl1fZQoaAZoCWgPQwieQUP/BC5aQJSGlFKUaBVN6ANoFkdAhpTRDCxeLXV9lChoBmgJaA9DCEm6ZvLNNlXAlIaUUpRoFU3wAWgWR0CGmVd/rjYJdX2UKGgGaAloD0MI3V1nQ/5pZ8CUhpRSlGgVTZcBaBZHQIabXek56t11fZQoaAZoCWgPQwiG6BA4EtNbQJSGlFKUaBVN6ANoFkdAhqptyPuG9HV9lChoBmgJaA9DCMlxp3Sw1l5AlIaUUpRoFU3oA2gWR0CGsdCE6DGtdX2UKGgGaAloD0MIsrlqniN/Y0CUhpRSlGgVTegDaBZHQIa6LZ39rGl1fZQoaAZoCWgPQwiRfCWQEgNVQJSGlFKUaBVN6ANoFkdAhsxxn3+MqHV9lChoBmgJaA9DCCrkSj0LaGFAlIaUUpRoFU3oA2gWR0CG0cgCfYjCdX2UKGgGaAloD0MID7bY7bMNX0CUhpRSlGgVTegDaBZHQIbYHdTHbRF1fZQoaAZoCWgPQwhSEDy+vV9ZQJSGlFKUaBVN6ANoFkdAhuXBKL8763VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf72c82040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf72c820d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf72c82160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf72c821f0>", "_build": "<function ActorCriticPolicy._build at 0x7fdf72c82280>", "forward": "<function ActorCriticPolicy.forward at 0x7fdf72c82310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf72c823a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdf72c82430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf72c824c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf72c82550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf72c825e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fdf72c7c600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670074432534503287, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD+7TwUhIm6oFrTu/E9VzhUZVK7WAY9NwAAgD8AAIA/YJhWP8aPp76w5d65HcTHNd95hz4TDjy3AACAPwAAgD+weo8+rSJDvfDGajmW0pO3boSqvuqCxLgAAIA/AACAP+bHsz3s0cC5MiyJO203D7wGrDC7k2z6vAAAAAAAAAAAGtwAPUcSWj+yTeM9nz21vv2LLj1rido8AAAAAAAAAAD6R1o+4XnsvCdLJrqs5cI4V01PvramXDkAAIA/AACAP5r1vL32bAa6RiYRO2/9ZDVRN1k7QlwougAAgD8AAIA/DbfTvSn4Lbraxy860IWXNUvrxTomVEm5AACAPwAAgD92W4Q++JWnPEdOSjnmKcU3t7M3PnBLgLgAAIA/AACAPwpQmD66Nxe9SxAeOb0T5LewhIW+imhJuAAAgD8AAIA/xjBAvkE71LwnAIs81tnMvUriPj753p4+AACAPwAAgD92F22+nPpevOFIsLsKOrS54l7OPXAh1DoAAIA/AACAP3PHlD32dEC6PmgiOl2GhjV5ykQ6vgI8uQAAgD8AAIA/86U0PmMTIT0qoTe+mytDvqOXd72JSKK9AAAAAAAAAACdFH++6FPqvPqFEzv1WZ85TYxQPr8dKroAAIA/AACAP8B6kL6Bsfy8pzquO4rQQzpZD2I+Z8+wugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlba4xmfOM0CUhpRSlIwBbJRL2YwBdJRHQJGkCwSrYGt1fZQoaAZoCWgPQwjwvioXKqBbQJSGlFKUaBVN6ANoFkdAkahUGiYb83V9lChoBmgJaA9DCPyohv2e1EpAlIaUUpRoFU3oA2gWR0CRrTHJtBOYdX2UKGgGaAloD0MIRuo9ldMmMECUhpRSlGgVS7VoFkdAkbB+uA7Pp3V9lChoBmgJaA9DCCx/vi1YNFJAlIaUUpRoFU3oA2gWR0CRswZJkGzKdX2UKGgGaAloD0MIfo6PFmfzV0CUhpRSlGgVTegDaBZHQJG2TkFOful1fZQoaAZoCWgPQwiskPKTagJZQJSGlFKUaBVN6ANoFkdAkcAFbu+h5HV9lChoBmgJaA9DCHszar5K5jtAlIaUUpRoFU3oA2gWR0CRwIXv6TGHdX2UKGgGaAloD0MIgNO7eD/vXECUhpRSlGgVTegDaBZHQJHAz3PAwf11fZQoaAZoCWgPQwgAjGfQ0IFfQJSGlFKUaBVN6ANoFkdAkcE34bjtHHV9lChoBmgJaA9DCLO0U3O5Gl9AlIaUUpRoFU3oA2gWR0CRw8irT6SDdX2UKGgGaAloD0MIn8iTpGtcYECUhpRSlGgVTegDaBZHQJHJEuXeFcp1fZQoaAZoCWgPQwgWiQlq+H5VQJSGlFKUaBVN6ANoFkdAkcpv7el9B3V9lChoBmgJaA9DCHsy/+ib71lAlIaUUpRoFU3oA2gWR0CRzHKraM72dX2UKGgGaAloD0MI6zpUUxLcYECUhpRSlGgVTegDaBZHQJHRGY5T6zp1fZQoaAZoCWgPQwhB8WPMXb88QJSGlFKUaBVN6ANoFkdAkeDc0gr6L3V9lChoBmgJaA9DCHpsy4CzxFxAlIaUUpRoFU3oA2gWR0CR55XN1QqJdX2UKGgGaAloD0MIsoNKXMeoXECUhpRSlGgVTegDaBZHQJHwcptrKvF1fZQoaAZoCWgPQwg8nwH1ZgBYQJSGlFKUaBVN6ANoFkdAkfXoj8k2P3V9lChoBmgJaA9DCIYeMXpuyTRAlIaUUpRoFUu/aBZHQJH1/Y02tMh1fZQoaAZoCWgPQwiC4VzDDKpbQJSGlFKUaBVN6ANoFkdAkfl8DwH7g3V9lChoBmgJaA9DCMbBpWPO9FVAlIaUUpRoFU3oA2gWR0CR/BoJRfnfdX2UKGgGaAloD0MI4gSm07rJQ0CUhpRSlGgVTegDaBZHQJH/ai/O+qR1fZQoaAZoCWgPQwiGkPP+PxBhQJSGlFKUaBVN6ANoFkdAkglBqO938nV9lChoBmgJaA9DCIaRXtTus19AlIaUUpRoFU3oA2gWR0CSCcIt16mgdX2UKGgGaAloD0MItOidCrjiWkCUhpRSlGgVTegDaBZHQJIKCfFrEcd1fZQoaAZoCWgPQwjww0FClPFZQJSGlFKUaBVN6ANoFkdAkgpiTQmeDnV9lChoBmgJaA9DCLxa7swEk1ZAlIaUUpRoFU3oA2gWR0CSDEt5le4TdX2UKGgGaAloD0MIshAdAkf4QECUhpRSlGgVS/xoFkdAkg0Zk078vXV9lChoBmgJaA9DCJkprb8lxV1AlIaUUpRoFU3oA2gWR0CSEFKpDNQkdX2UKGgGaAloD0MIRii2giadYECUhpRSlGgVTegDaBZHQJIRbfZVXFN1fZQoaAZoCWgPQwhQ/YNIhiVdQJSGlFKUaBVN6ANoFkdAkhNtiH6/I3V9lChoBmgJaA9DCGRam8Z2zmBAlIaUUpRoFU3oA2gWR0CSFr29tdiVdX2UKGgGaAloD0MIIJxPHav9XUCUhpRSlGgVTegDaBZHQJIjNuKoAGV1fZQoaAZoCWgPQwhnQ/6ZQXBdQJSGlFKUaBVN6ANoFkdAkpozfzjFQ3V9lChoBmgJaA9DCGTPnsvUqF5AlIaUUpRoFU3oA2gWR0CSn+cWTHKfdX2UKGgGaAloD0MIcobijjc9XECUhpRSlGgVTegDaBZHQJKf+8Djin51fZQoaAZoCWgPQwhQbXAi+sdfQJSGlFKUaBVN6ANoFkdAkqNwO4G2TnV9lChoBmgJaA9DCMe44uKoOltAlIaUUpRoFU3oA2gWR0CSqXk4FRpDdX2UKGgGaAloD0MISghW1cvPD0CUhpRSlGgVS9VoFkdAkq9FYISlFnV9lChoBmgJaA9DCN0iMNY3Z1hAlIaUUpRoFU3oA2gWR0CSswC+De0pdX2UKGgGaAloD0MIuOf500Y2XUCUhpRSlGgVTegDaBZHQJKzc6p5u651fZQoaAZoCWgPQwjSim8ofMBSQJSGlFKUaBVN6ANoFkdAkrO23KB/Z3V9lChoBmgJaA9DCIi85erHw19AlIaUUpRoFU3oA2gWR0CStA0qH447dX2UKGgGaAloD0MIxCEbSBcqWUCUhpRSlGgVTegDaBZHQJK13JA+pwV1fZQoaAZoCWgPQwgZHvtZLI1eQJSGlFKUaBVN6ANoFkdAkraxv3rUsnV9lChoBmgJaA9DCCNNvAM85VZAlIaUUpRoFU3oA2gWR0CSuZlVcUuddX2UKGgGaAloD0MIUtUEUXdqYECUhpRSlGgVTegDaBZHQJK6sRK6Fuh1fZQoaAZoCWgPQwiXrIpwE2xhQJSGlFKUaBVN6ANoFkdAkryY/Vy3kXV9lChoBmgJaA9DCCNNvAM8O2JAlIaUUpRoFU3oA2gWR0CSv8VyWAwxdX2UKGgGaAloD0MI1lQWhd23YUCUhpRSlGgVTegDaBZHQJLK9VKf4AV1fZQoaAZoCWgPQwhwP+CBAUNpQJSGlFKUaBVNiANoFkdAktL41DSgG3V9lChoBmgJaA9DCKDE506whFFAlIaUUpRoFU3oA2gWR0CS312xY7q6dX2UKGgGaAloD0MIiH/Y0iOQYUCUhpRSlGgVTegDaBZHQJLi5mNBF/h1fZQoaAZoCWgPQwj/XZ8564VaQJSGlFKUaBVN6ANoFkdAkukDXSSeRXV9lChoBmgJaA9DCETBjClYGz9AlIaUUpRoFU3oA2gWR0CS7uPci4axdX2UKGgGaAloD0MIfNY1Wg4WY0CUhpRSlGgVTegDaBZHQJLytH09QoF1fZQoaAZoCWgPQwinzTgNUZVPQJSGlFKUaBVN6ANoFkdAkvMwfhddFHV9lChoBmgJaA9DCAggtYmT5FxAlIaUUpRoFU3oA2gWR0CS83nyNGVidX2UKGgGaAloD0MI+Wncm98TXECUhpRSlGgVTegDaBZHQJLz1dUsFt91fZQoaAZoCWgPQwiKzFzg8mVVQJSGlFKUaBVN6ANoFkdAkvXV/lQuVXV9lChoBmgJaA9DCE2jycUY6VtAlIaUUpRoFU3oA2gWR0CS9rQpF1B/dX2UKGgGaAloD0MIuvYF9MLZWkCUhpRSlGgVTegDaBZHQJL5jOX3QD51fZQoaAZoCWgPQwgCnx9GCJ9UQJSGlFKUaBVN6ANoFkdAkvqSliz9j3V9lChoBmgJaA9DCIJvmj470k1AlIaUUpRoFU3oA2gWR0CS/EgCfYjCdX2UKGgGaAloD0MITIkkehkDXUCUhpRSlGgVTegDaBZHQJL/VqYZ2p11fZQoaAZoCWgPQwjJzAUuj1RcQJSGlFKUaBVN6ANoFkdAkwkcGHHmzXV9lChoBmgJaA9DCGNGeHsQf1dAlIaUUpRoFU3oA2gWR0CTD+y6+WWydX2UKGgGaAloD0MI2nQEcLPDZECUhpRSlGgVTc4CaBZHQJOa7fKp1ih1fZQoaAZoCWgPQwgZdhiT/sZYQJSGlFKUaBVN6ANoFkdAk5ry5/b0v3V9lChoBmgJaA9DCHsxlBNtsWFAlIaUUpRoFU3oA2gWR0CTng5lvqC6dX2UKGgGaAloD0MIwy6KHni2YECUhpRSlGgVTegDaBZHQJOlWJP69Ch1fZQoaAZoCWgPQwjw+PauQf5aQJSGlFKUaBVN6ANoFkdAk6qVnZkCm3V9lChoBmgJaA9DCEiHhzB+Vl9AlIaUUpRoFU3oA2gWR0CTreXsw+MZdX2UKGgGaAloD0MIJlEv+DTGVECUhpRSlGgVTegDaBZHQJOuTDm8ujB1fZQoaAZoCWgPQwgQy2YOSU9kQJSGlFKUaBVN6ANoFkdAk66IDYAbQ3V9lChoBmgJaA9DCO/hkuNO0VpAlIaUUpRoFU3oA2gWR0CTsOuAI6bOdX2UKGgGaAloD0MI5gXYR6eAZECUhpRSlGgVTegDaBZHQJOxyYVqN6x1fZQoaAZoCWgPQwipaRfTTMNaQJSGlFKUaBVN6ANoFkdAk7Unlnyup3V9lChoBmgJaA9DCA5pVOBkO19AlIaUUpRoFU3oA2gWR0CTtm9Tgl4UdX2UKGgGaAloD0MI2ln0TgV8WUCUhpRSlGgVTegDaBZHQJO5gI6bONZ1fZQoaAZoCWgPQwh0YDlCBuVhQJSGlFKUaBVN6ANoFkdAk72JQUHpr3V9lChoBmgJaA9DCMVztoDQF2BAlIaUUpRoFU3oA2gWR0CTzUyAhB7edX2UKGgGaAloD0MI2quPh75pXUCUhpRSlGgVTegDaBZHQJPVjZQHiWF1fZQoaAZoCWgPQwiop4/AHz5fQJSGlFKUaBVN6ANoFkdAk+HAggX/HnV9lChoBmgJaA9DCAWlaOVeAlxAlIaUUpRoFU3oA2gWR0CT4cUDMeOodX2UKGgGaAloD0MI0NIVbCOhYECUhpRSlGgVTegDaBZHQJPkyVE/jbV1fZQoaAZoCWgPQwjUEFX4s2ZhQJSGlFKUaBVN6ANoFkdAk+m9et0V8HV9lChoBmgJaA9DCP32deAc52BAlIaUUpRoFU3oA2gWR0CT7pAd4mkWdX2UKGgGaAloD0MIO1YpPdN4V0CUhpRSlGgVTegDaBZHQJPxh47ihnJ1fZQoaAZoCWgPQwh9sIwN3Y1hQJSGlFKUaBVN6ANoFkdAk/HtFjNILHV9lChoBmgJaA9DCCRh304ii11AlIaUUpRoFU3oA2gWR0CT8iJCjUNKdX2UKGgGaAloD0MI0At3Lox6ZkCUhpRSlGgVTegDaBZHQJP0RhsqJ/J1fZQoaAZoCWgPQwglIZG2cTBgQJSGlFKUaBVN6ANoFkdAk/UaUVzp5nV9lChoBmgJaA9DCFex+E1h5FlAlIaUUpRoFU3oA2gWR0CT+B+hGpdbdX2UKGgGaAloD0MI0sd8QKBGWkCUhpRSlGgVTegDaBZHQJP5QjNY8uB1fZQoaAZoCWgPQwiZEd4ehEZeQJSGlFKUaBVN6ANoFkdAk/sno9s7+3V9lChoBmgJaA9DCNsV+mAZa11AlIaUUpRoFU3oA2gWR0CT/nASnLq2dX2UKGgGaAloD0MI9S7ej1s+Y0CUhpRSlGgVTegDaBZHQJQI1hXr+o91fZQoaAZoCWgPQwhbP/1nzaZeQJSGlFKUaBVN6ANoFkdAlBBSfUWl/HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
plander-defaults.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:822bfba2e698a3cf9643a714428d865e6ca0551f1efe37f79685ec5fe922265c
|
3 |
+
size 147148
|
plander-defaults/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
plander-defaults/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf72c82040>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf72c820d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf72c82160>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf72c821f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fdf72c82280>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fdf72c82310>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf72c823a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fdf72c82430>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf72c824c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf72c82550>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf72c825e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fdf72c7c600>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000.0,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670074432534503287,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAD+7TwUhIm6oFrTu/E9VzhUZVK7WAY9NwAAgD8AAIA/YJhWP8aPp76w5d65HcTHNd95hz4TDjy3AACAPwAAgD+weo8+rSJDvfDGajmW0pO3boSqvuqCxLgAAIA/AACAP+bHsz3s0cC5MiyJO203D7wGrDC7k2z6vAAAAAAAAAAAGtwAPUcSWj+yTeM9nz21vv2LLj1rido8AAAAAAAAAAD6R1o+4XnsvCdLJrqs5cI4V01PvramXDkAAIA/AACAP5r1vL32bAa6RiYRO2/9ZDVRN1k7QlwougAAgD8AAIA/DbfTvSn4Lbraxy860IWXNUvrxTomVEm5AACAPwAAgD92W4Q++JWnPEdOSjnmKcU3t7M3PnBLgLgAAIA/AACAPwpQmD66Nxe9SxAeOb0T5LewhIW+imhJuAAAgD8AAIA/xjBAvkE71LwnAIs81tnMvUriPj753p4+AACAPwAAgD92F22+nPpevOFIsLsKOrS54l7OPXAh1DoAAIA/AACAP3PHlD32dEC6PmgiOl2GhjV5ykQ6vgI8uQAAgD8AAIA/86U0PmMTIT0qoTe+mytDvqOXd72JSKK9AAAAAAAAAACdFH++6FPqvPqFEzv1WZ85TYxQPr8dKroAAIA/AACAP8B6kL6Bsfy8pzquO4rQQzpZD2I+Z8+wugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlba4xmfOM0CUhpRSlIwBbJRL2YwBdJRHQJGkCwSrYGt1fZQoaAZoCWgPQwjwvioXKqBbQJSGlFKUaBVN6ANoFkdAkahUGiYb83V9lChoBmgJaA9DCPyohv2e1EpAlIaUUpRoFU3oA2gWR0CRrTHJtBOYdX2UKGgGaAloD0MIRuo9ldMmMECUhpRSlGgVS7VoFkdAkbB+uA7Pp3V9lChoBmgJaA9DCCx/vi1YNFJAlIaUUpRoFU3oA2gWR0CRswZJkGzKdX2UKGgGaAloD0MIfo6PFmfzV0CUhpRSlGgVTegDaBZHQJG2TkFOful1fZQoaAZoCWgPQwiskPKTagJZQJSGlFKUaBVN6ANoFkdAkcAFbu+h5HV9lChoBmgJaA9DCHszar5K5jtAlIaUUpRoFU3oA2gWR0CRwIXv6TGHdX2UKGgGaAloD0MIgNO7eD/vXECUhpRSlGgVTegDaBZHQJHAz3PAwf11fZQoaAZoCWgPQwgAjGfQ0IFfQJSGlFKUaBVN6ANoFkdAkcE34bjtHHV9lChoBmgJaA9DCLO0U3O5Gl9AlIaUUpRoFU3oA2gWR0CRw8irT6SDdX2UKGgGaAloD0MIn8iTpGtcYECUhpRSlGgVTegDaBZHQJHJEuXeFcp1fZQoaAZoCWgPQwgWiQlq+H5VQJSGlFKUaBVN6ANoFkdAkcpv7el9B3V9lChoBmgJaA9DCHsy/+ib71lAlIaUUpRoFU3oA2gWR0CRzHKraM72dX2UKGgGaAloD0MI6zpUUxLcYECUhpRSlGgVTegDaBZHQJHRGY5T6zp1fZQoaAZoCWgPQwhB8WPMXb88QJSGlFKUaBVN6ANoFkdAkeDc0gr6L3V9lChoBmgJaA9DCHpsy4CzxFxAlIaUUpRoFU3oA2gWR0CR55XN1QqJdX2UKGgGaAloD0MIsoNKXMeoXECUhpRSlGgVTegDaBZHQJHwcptrKvF1fZQoaAZoCWgPQwg8nwH1ZgBYQJSGlFKUaBVN6ANoFkdAkfXoj8k2P3V9lChoBmgJaA9DCIYeMXpuyTRAlIaUUpRoFUu/aBZHQJH1/Y02tMh1fZQoaAZoCWgPQwiC4VzDDKpbQJSGlFKUaBVN6ANoFkdAkfl8DwH7g3V9lChoBmgJaA9DCMbBpWPO9FVAlIaUUpRoFU3oA2gWR0CR/BoJRfnfdX2UKGgGaAloD0MI4gSm07rJQ0CUhpRSlGgVTegDaBZHQJH/ai/O+qR1fZQoaAZoCWgPQwiGkPP+PxBhQJSGlFKUaBVN6ANoFkdAkglBqO938nV9lChoBmgJaA9DCIaRXtTus19AlIaUUpRoFU3oA2gWR0CSCcIt16mgdX2UKGgGaAloD0MItOidCrjiWkCUhpRSlGgVTegDaBZHQJIKCfFrEcd1fZQoaAZoCWgPQwjww0FClPFZQJSGlFKUaBVN6ANoFkdAkgpiTQmeDnV9lChoBmgJaA9DCLxa7swEk1ZAlIaUUpRoFU3oA2gWR0CSDEt5le4TdX2UKGgGaAloD0MIshAdAkf4QECUhpRSlGgVS/xoFkdAkg0Zk078vXV9lChoBmgJaA9DCJkprb8lxV1AlIaUUpRoFU3oA2gWR0CSEFKpDNQkdX2UKGgGaAloD0MIRii2giadYECUhpRSlGgVTegDaBZHQJIRbfZVXFN1fZQoaAZoCWgPQwhQ/YNIhiVdQJSGlFKUaBVN6ANoFkdAkhNtiH6/I3V9lChoBmgJaA9DCGRam8Z2zmBAlIaUUpRoFU3oA2gWR0CSFr29tdiVdX2UKGgGaAloD0MIIJxPHav9XUCUhpRSlGgVTegDaBZHQJIjNuKoAGV1fZQoaAZoCWgPQwhnQ/6ZQXBdQJSGlFKUaBVN6ANoFkdAkpozfzjFQ3V9lChoBmgJaA9DCGTPnsvUqF5AlIaUUpRoFU3oA2gWR0CSn+cWTHKfdX2UKGgGaAloD0MIcobijjc9XECUhpRSlGgVTegDaBZHQJKf+8Djin51fZQoaAZoCWgPQwhQbXAi+sdfQJSGlFKUaBVN6ANoFkdAkqNwO4G2TnV9lChoBmgJaA9DCMe44uKoOltAlIaUUpRoFU3oA2gWR0CSqXk4FRpDdX2UKGgGaAloD0MISghW1cvPD0CUhpRSlGgVS9VoFkdAkq9FYISlFnV9lChoBmgJaA9DCN0iMNY3Z1hAlIaUUpRoFU3oA2gWR0CSswC+De0pdX2UKGgGaAloD0MIuOf500Y2XUCUhpRSlGgVTegDaBZHQJKzc6p5u651fZQoaAZoCWgPQwjSim8ofMBSQJSGlFKUaBVN6ANoFkdAkrO23KB/Z3V9lChoBmgJaA9DCIi85erHw19AlIaUUpRoFU3oA2gWR0CStA0qH447dX2UKGgGaAloD0MIxCEbSBcqWUCUhpRSlGgVTegDaBZHQJK13JA+pwV1fZQoaAZoCWgPQwgZHvtZLI1eQJSGlFKUaBVN6ANoFkdAkraxv3rUsnV9lChoBmgJaA9DCCNNvAM85VZAlIaUUpRoFU3oA2gWR0CSuZlVcUuddX2UKGgGaAloD0MIUtUEUXdqYECUhpRSlGgVTegDaBZHQJK6sRK6Fuh1fZQoaAZoCWgPQwiXrIpwE2xhQJSGlFKUaBVN6ANoFkdAkryY/Vy3kXV9lChoBmgJaA9DCCNNvAM8O2JAlIaUUpRoFU3oA2gWR0CSv8VyWAwxdX2UKGgGaAloD0MI1lQWhd23YUCUhpRSlGgVTegDaBZHQJLK9VKf4AV1fZQoaAZoCWgPQwhwP+CBAUNpQJSGlFKUaBVNiANoFkdAktL41DSgG3V9lChoBmgJaA9DCKDE506whFFAlIaUUpRoFU3oA2gWR0CS312xY7q6dX2UKGgGaAloD0MIiH/Y0iOQYUCUhpRSlGgVTegDaBZHQJLi5mNBF/h1fZQoaAZoCWgPQwj/XZ8564VaQJSGlFKUaBVN6ANoFkdAkukDXSSeRXV9lChoBmgJaA9DCETBjClYGz9AlIaUUpRoFU3oA2gWR0CS7uPci4axdX2UKGgGaAloD0MIfNY1Wg4WY0CUhpRSlGgVTegDaBZHQJLytH09QoF1fZQoaAZoCWgPQwinzTgNUZVPQJSGlFKUaBVN6ANoFkdAkvMwfhddFHV9lChoBmgJaA9DCAggtYmT5FxAlIaUUpRoFU3oA2gWR0CS83nyNGVidX2UKGgGaAloD0MI+Wncm98TXECUhpRSlGgVTegDaBZHQJLz1dUsFt91fZQoaAZoCWgPQwiKzFzg8mVVQJSGlFKUaBVN6ANoFkdAkvXV/lQuVXV9lChoBmgJaA9DCE2jycUY6VtAlIaUUpRoFU3oA2gWR0CS9rQpF1B/dX2UKGgGaAloD0MIuvYF9MLZWkCUhpRSlGgVTegDaBZHQJL5jOX3QD51fZQoaAZoCWgPQwgCnx9GCJ9UQJSGlFKUaBVN6ANoFkdAkvqSliz9j3V9lChoBmgJaA9DCIJvmj470k1AlIaUUpRoFU3oA2gWR0CS/EgCfYjCdX2UKGgGaAloD0MITIkkehkDXUCUhpRSlGgVTegDaBZHQJL/VqYZ2p11fZQoaAZoCWgPQwjJzAUuj1RcQJSGlFKUaBVN6ANoFkdAkwkcGHHmzXV9lChoBmgJaA9DCGNGeHsQf1dAlIaUUpRoFU3oA2gWR0CTD+y6+WWydX2UKGgGaAloD0MI2nQEcLPDZECUhpRSlGgVTc4CaBZHQJOa7fKp1ih1fZQoaAZoCWgPQwgZdhiT/sZYQJSGlFKUaBVN6ANoFkdAk5ry5/b0v3V9lChoBmgJaA9DCHsxlBNtsWFAlIaUUpRoFU3oA2gWR0CTng5lvqC6dX2UKGgGaAloD0MIwy6KHni2YECUhpRSlGgVTegDaBZHQJOlWJP69Ch1fZQoaAZoCWgPQwjw+PauQf5aQJSGlFKUaBVN6ANoFkdAk6qVnZkCm3V9lChoBmgJaA9DCEiHhzB+Vl9AlIaUUpRoFU3oA2gWR0CTreXsw+MZdX2UKGgGaAloD0MIJlEv+DTGVECUhpRSlGgVTegDaBZHQJOuTDm8ujB1fZQoaAZoCWgPQwgQy2YOSU9kQJSGlFKUaBVN6ANoFkdAk66IDYAbQ3V9lChoBmgJaA9DCO/hkuNO0VpAlIaUUpRoFU3oA2gWR0CTsOuAI6bOdX2UKGgGaAloD0MI5gXYR6eAZECUhpRSlGgVTegDaBZHQJOxyYVqN6x1fZQoaAZoCWgPQwipaRfTTMNaQJSGlFKUaBVN6ANoFkdAk7Unlnyup3V9lChoBmgJaA9DCA5pVOBkO19AlIaUUpRoFU3oA2gWR0CTtm9Tgl4UdX2UKGgGaAloD0MI2ln0TgV8WUCUhpRSlGgVTegDaBZHQJO5gI6bONZ1fZQoaAZoCWgPQwh0YDlCBuVhQJSGlFKUaBVN6ANoFkdAk72JQUHpr3V9lChoBmgJaA9DCMVztoDQF2BAlIaUUpRoFU3oA2gWR0CTzUyAhB7edX2UKGgGaAloD0MI2quPh75pXUCUhpRSlGgVTegDaBZHQJPVjZQHiWF1fZQoaAZoCWgPQwiop4/AHz5fQJSGlFKUaBVN6ANoFkdAk+HAggX/HnV9lChoBmgJaA9DCAWlaOVeAlxAlIaUUpRoFU3oA2gWR0CT4cUDMeOodX2UKGgGaAloD0MI0NIVbCOhYECUhpRSlGgVTegDaBZHQJPkyVE/jbV1fZQoaAZoCWgPQwjUEFX4s2ZhQJSGlFKUaBVN6ANoFkdAk+m9et0V8HV9lChoBmgJaA9DCP32deAc52BAlIaUUpRoFU3oA2gWR0CT7pAd4mkWdX2UKGgGaAloD0MIO1YpPdN4V0CUhpRSlGgVTegDaBZHQJPxh47ihnJ1fZQoaAZoCWgPQwh9sIwN3Y1hQJSGlFKUaBVN6ANoFkdAk/HtFjNILHV9lChoBmgJaA9DCCRh304ii11AlIaUUpRoFU3oA2gWR0CT8iJCjUNKdX2UKGgGaAloD0MI0At3Lox6ZkCUhpRSlGgVTegDaBZHQJP0RhsqJ/J1fZQoaAZoCWgPQwglIZG2cTBgQJSGlFKUaBVN6ANoFkdAk/UaUVzp5nV9lChoBmgJaA9DCFex+E1h5FlAlIaUUpRoFU3oA2gWR0CT+B+hGpdbdX2UKGgGaAloD0MI0sd8QKBGWkCUhpRSlGgVTegDaBZHQJP5QjNY8uB1fZQoaAZoCWgPQwiZEd4ehEZeQJSGlFKUaBVN6ANoFkdAk/sno9s7+3V9lChoBmgJaA9DCNsV+mAZa11AlIaUUpRoFU3oA2gWR0CT/nASnLq2dX2UKGgGaAloD0MI9S7ej1s+Y0CUhpRSlGgVTegDaBZHQJQI1hXr+o91fZQoaAZoCWgPQwhbP/1nzaZeQJSGlFKUaBVN6ANoFkdAlBBSfUWl/HVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
plander-defaults/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67637b71aecd8f2725f4d014041297ab47eb97f0efe73764fbf9a91509e313cb
|
3 |
+
size 87865
|
plander-defaults/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1fa09918fb0e38ac2efaa108684a79e23f7d3713f956cdcdf07b6439046aff64
|
3 |
+
size 43201
|
plander-defaults/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
plander-defaults/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.15
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52c3ad7a0f19719c182d7839f68d6e3abec64b52b0db41eba07d5bafe361d22f
|
3 |
+
size 206835
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 172.03824781475018, "std_reward": 90.73663017414965, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-03T13:56:13.524583"}
|