monti-python
commited on
Commit
•
74d0255
1
Parent(s):
5bd6ae6
Publish first model
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.26 +/- 19.86
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78ff7939c310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78ff7939c3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78ff7939c430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78ff7939c4c0>", "_build": "<function ActorCriticPolicy._build at 0x78ff7939c550>", "forward": "<function ActorCriticPolicy.forward at 0x78ff7939c5e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78ff7939c670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78ff7939c700>", "_predict": "<function ActorCriticPolicy._predict at 0x78ff7939c790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78ff7939c820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78ff7939c8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78ff7939c940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78ff7938d940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717241549782491759, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAJy7wxVcs9O/OLvZ+WS77SIau9T4E0OwAAAAAAAAAADVrNvezj+btmrAY8cd55PK7WCz219hW9AACAPwAAgD/A1MC9SGeAuij4GDm630g0LcQoOtKOMbgAAIA/AACAP5qtBb3IYMS8xqnIPCKx0rxXz7s9ha9ZPgAAgD8AAIA/AJ7+vTe9WD+r2DQ9/GvTvolTQDyTXSO8AAAAAAAAAAANkaK9eGKYPXZSjzySwXO+fpJrva6NhrwAAAAAAAAAAJ0feb4Ntwm9Dv/iOaPlpDYIgG0+JhYQuQAAgD8AAIA/4LwlvpwbRLyJ+qO93fwOvBghsT2wU+o8AACAPwAAgD/NM5Y99iBMuqBx5LkeC/20/UIfO2+eBjkAAIA/AAAAAIAYHL1JkyM9eD7jPF1CYr6/1oE8Q+lyPQAAAAAAAAAAM+O2vHFjH7tq4sc7mr2sPL7Ub7xJvZM9AACAPwAAgD+AfP29GwkEP9F7tz0JAUi+Qn7AOvq8M7wAAAAAAAAAAOb7zD3spAo/XSghvjs+rr6iG0+8MBNWPAAAAAAAAAAAs25JPR/WvbvGxVa8NQGUPF5/CD29Y3q9AACAPwAAgD9Ahpa9DytZvAcEBrzyFAI99w+FPWW4bD0AAIA/AACAP61vKT7Jj6U/gpKMPnyY7r4GPKQ+LuYTPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHvzfzjFQ6MAWyUTUQBjAF0lEdAkK9Z9qk/KXV9lChoBkdAcrvXlbNbDGgHTSEBaAhHQJCvfiCJ40N1fZQoaAZHQHH/V23azu5oB00dAWgIR0CQr6qZtvXLdX2UKGgGR0BvauNrCWNWaAdNIwFoCEdAkK/a5Gz8g3V9lChoBkdAcPH2/i5uqGgHTT8BaAhHQJCwwEIPbwl1fZQoaAZHQHHgIZQ53khoB01JAWgIR0CQsZj2SMcZdX2UKGgGR0BuQ1MPBi1BaAdNAAFoCEdAkLLGnbZezHV9lChoBkdAcPUvYe1a4mgHTQ8BaAhHQJCzdZMcp9Z1fZQoaAZHQHFVafOD8LtoB00wAWgIR0CQs7flZHNHdX2UKGgGR0BwOGM72criaAdNHQFoCEdAkLPJmh/RV3V9lChoBkdAchaBInSfDmgHS+1oCEdAkLQF4HHFP3V9lChoBkdAcBIwc5sCT2gHTSoBaAhHQJC0Hr1M/Ql1fZQoaAZHQHGn1Gsmv4doB0vyaAhHQJC1tpg1FYx1fZQoaAZHQHEI5npSrHVoB00nAWgIR0CQtf5GjKxLdX2UKGgGR0BwYtanrIHUaAdNVwFoCEdAkLZpwjt5U3V9lChoBkdAcq0qu8scyWgHTRMBaAhHQJC3mS0Sh8J1fZQoaAZHQG80Dslb/wRoB00mAWgIR0CQuBFZPl+3dX2UKGgGR0BxLLsNUfgaaAdL9mgIR0CQuDCm/FisdX2UKGgGR0Buo3TAnDziaAdNSwFoCEdAkLhYUSIxg3V9lChoBkdAcnDpTdcjaGgHTUIBaAhHQJC5PLs8gZF1fZQoaAZHQHG+4re67NBoB00YAWgIR0CQuhbobGWEdX2UKGgGR0BvIjjDKoycaAdNKQFoCEdAkLzVA/s3Q3V9lChoBkdAcAD3CsOoYWgHTTkBaAhHQJC969alk6N1fZQoaAZHQEnZZmI0qH5oB0vjaAhHQJC+DR7Z39t1fZQoaAZHQG+8N+1Bt1poB001AWgIR0CQvjTZxrBTdX2UKGgGR0Bxsp/CqIacaAdNYwFoCEdAkL5a4hEBsHV9lChoBkdAcIGJmNBF/mgHTVUBaAhHQJC+7R8c+7l1fZQoaAZHQHKDdxEORT1oB01OAWgIR0CQvwHwPRRedX2UKGgGR0BxpdHtnf2saAdNGwFoCEdAkL+Nld1Md3V9lChoBkdAcHTuQZGayGgHTSUBaAhHQJC/lv99+gF1fZQoaAZHQHJr54GD+R5oB0v6aAhHQJDAOYa5wwV1fZQoaAZHQG6MO801qFhoB0v1aAhHQJDAgTL4etF1fZQoaAZHQHHXGyxA0KtoB00PAWgIR0CQwXTDwYtQdX2UKGgGR0ByPVFqi48VaAdL9WgIR0CQwcJ1q33IdX2UKGgGR0BwbnsOXmeUaAdNMQFoCEdAkMKpjMFEA3V9lChoBkdAbSAkbgjyF2gHTU8CaAhHQJDCslAu7H11fZQoaAZHQHDgQWi1y/9oB0v9aAhHQJDC0NkOI691fZQoaAZHQHNZMgZCOWBoB0vsaAhHQJDETNMXaal1fZQoaAZHQG1pareZXuFoB00JAWgIR0CQxkQIUrTZdX2UKGgGR0BxaSC7K7qZaAdNIAFoCEdAkMc29cry2HV9lChoBkdAcMn90A93bGgHTTwBaAhHQJDH9HG0eEJ1fZQoaAZHQG3NYU34sVdoB00TAWgIR0CQx//qPfbcdX2UKGgGR0ByjZ2Rq46PaAdL9GgIR0CQx/pazNUwdX2UKGgGR0BxEjwhGH58aAdNKQFoCEdAkMgtCRfWtnV9lChoBkdAbLlng5zYEmgHTSMBaAhHQJDIh2C/XXl1fZQoaAZHQG6HNvGZNPBoB01YAWgIR0CQyLsg+yJLdX2UKGgGR0BvrbyOJcgRaAdNBAFoCEdAkMmgdsBQvnV9lChoBkdAckvWWhRIjGgHTWsBaAhHQJDKFsvZh8Z1fZQoaAZHQG8titihFmZoB00LAWgIR0CQysfA9FF2dX2UKGgGR0Btxwe5nUUgaAdNXgFoCEdAkN9VVHWjGnV9lChoBkdAcMMpEhJRO2gHTQwBaAhHQJDfZGWldkd1fZQoaAZHQHL0NxEORT1oB00+AWgIR0CQ34LR8c+8dX2UKGgGR0BuCx8jRlYmaAdNKQFoCEdAkN/oJqqOtHV9lChoBkdAcWiHQQcxTWgHTRwBaAhHQJDhHdHlOoJ1fZQoaAZHQHMy6zAvcrRoB0v8aAhHQJDh6Pn0TUR1fZQoaAZHQHNZ01/DtPZoB0vaaAhHQJDi7NPgvUV1fZQoaAZHQG9+U0Nz8xdoB00gAWgIR0CQ4/sWweNldX2UKGgGR0BxDchouf29aAdL+2gIR0CQ5EBRhttRdX2UKGgGR0BuaLmSyMUAaAdNHwFoCEdAkOSmf9P1tnV9lChoBkdAcLWuTzND+mgHTSEBaAhHQJDksRHww0x1fZQoaAZHQHDAr5VOsT5oB00jAWgIR0CQ5L1SOzY3dX2UKGgGR0ByWM2S+xnnaAdL/WgIR0CQ5TWxQizLdX2UKGgGR0BzRyF+NLlFaAdL1mgIR0CQ5X4J/oaDdX2UKGgGR0BwNQh9srNGaAdNUAFoCEdAkOYwgTyrgnV9lChoBkdAcW+gcLjPwGgHS/poCEdAkOZRM8HObHV9lChoBkdAcoLSi/O+qWgHTTsBaAhHQJDnbfXPJJZ1fZQoaAZHQHH0Rr30wrVoB005AWgIR0CQ6A2g3974dX2UKGgGR0Bwvk3Kji4saAdNJQFoCEdAkOhM8kleGHV9lChoBkdAcmbB91EE1WgHTUABaAhHQJDoZZRsMy91fZQoaAZHQHDdc7dSEUVoB0v4aAhHQJDpOa4MF2V1fZQoaAZHQHFt5yZKFqVoB0v6aAhHQJDqJvybx3F1fZQoaAZHQHGPHy7PIGRoB00NAWgIR0CQ68osqaw2dX2UKGgGR0BwqZAKOT7maAdNHQFoCEdAkOykMgEEDHV9lChoBkdAcE79XtBv72gHTRoBaAhHQJDs9lTWGyp1fZQoaAZHQHIVJq7AcktoB00VAWgIR0CQ7YEqUeMidX2UKGgGR0BwbxHuqm0maAdNOQFoCEdAkO4gUxmCiHV9lChoBkdAcT1MUypJgGgHTSQBaAhHQJDuZ2jfvWp1fZQoaAZHQHBQxqGlANZoB00WAWgIR0CQ7rq7yxzJdX2UKGgGR0Bw5uJP69CeaAdL9mgIR0CQ7xYUnG83dX2UKGgGR0Bv3siyIHkcaAdNWgFoCEdAkO9I46wMY3V9lChoBkdAcHKEroW56WgHTToBaAhHQJDv9s41gpl1fZQoaAZHQHOO4Ny5qdpoB00EAWgIR0CQ8HI1tO2zdX2UKGgGR0Bwe7rE9+w1aAdNNgFoCEdAkPGanWJ79nV9lChoBkdAb/CRRMvh62gHTQYBaAhHQJDyhqnFYMh1fZQoaAZHQG5tYffXPJJoB01gAWgIR0CQ80HcUM5PdX2UKGgGR0BzC6BSUC7saAdNGgFoCEdAkPTGlZX+2nV9lChoBkdAcGErNW2gF2gHTX8BaAhHQJD1YERradt1fZQoaAZHQG9QPM0P6KtoB00iAWgIR0CQ9ePQv6CUdX2UKGgGR0BvqUj5bhWHaAdNAAFoCEdAkPcvCyhSL3V9lChoBkdAcVfl+3H7xmgHTTQBaAhHQJD3dUvPC2t1fZQoaAZHQHBlfjKgZjxoB00lAWgIR0CQ94a3I+4cdX2UKGgGR0BvDe5hBqsVaAdNJAFoCEdAkPfE43m3fHV9lChoBkdAchG4/eLvTmgHS/NoCEdAkPfSDRMN+nV9lChoBkdAcbjnWJ79h2gHTSMBaAhHQJD4DcEeQuF1fZQoaAZHQHG/DJEH+qBoB01eAWgIR0CQ+E3Roh6jdX2UKGgGR0BxC3k4m1IAaAdNJwFoCEdAkPibCm/Fi3V9lChoBkdAcGMWKuSwGGgHS/xoCEdAkPmJcTrVv3V9lChoBkdAcMJwaR6ni2gHTUoBaAhHQJD6m/IsAed1fZQoaAZHQG+S8m8dxQ1oB00HAWgIR0CQ+3WOZLIxdX2UKGgGR0Bwe1s41gpjaAdNRAFoCEdAkPycxj8UEnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3c4e7a147cd71ccc3679f4cfdfd4e951c79d807376030e0ac11a3572f0d1e99
|
3 |
+
size 148060
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x78ff7939c310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78ff7939c3a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78ff7939c430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78ff7939c4c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x78ff7939c550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x78ff7939c5e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x78ff7939c670>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78ff7939c700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x78ff7939c790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78ff7939c820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78ff7939c8b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x78ff7939c940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x78ff7938d940>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1717241549782491759,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAJy7wxVcs9O/OLvZ+WS77SIau9T4E0OwAAAAAAAAAADVrNvezj+btmrAY8cd55PK7WCz219hW9AACAPwAAgD/A1MC9SGeAuij4GDm630g0LcQoOtKOMbgAAIA/AACAP5qtBb3IYMS8xqnIPCKx0rxXz7s9ha9ZPgAAgD8AAIA/AJ7+vTe9WD+r2DQ9/GvTvolTQDyTXSO8AAAAAAAAAAANkaK9eGKYPXZSjzySwXO+fpJrva6NhrwAAAAAAAAAAJ0feb4Ntwm9Dv/iOaPlpDYIgG0+JhYQuQAAgD8AAIA/4LwlvpwbRLyJ+qO93fwOvBghsT2wU+o8AACAPwAAgD/NM5Y99iBMuqBx5LkeC/20/UIfO2+eBjkAAIA/AAAAAIAYHL1JkyM9eD7jPF1CYr6/1oE8Q+lyPQAAAAAAAAAAM+O2vHFjH7tq4sc7mr2sPL7Ub7xJvZM9AACAPwAAgD+AfP29GwkEP9F7tz0JAUi+Qn7AOvq8M7wAAAAAAAAAAOb7zD3spAo/XSghvjs+rr6iG0+8MBNWPAAAAAAAAAAAs25JPR/WvbvGxVa8NQGUPF5/CD29Y3q9AACAPwAAgD9Ahpa9DytZvAcEBrzyFAI99w+FPWW4bD0AAIA/AACAP61vKT7Jj6U/gpKMPnyY7r4GPKQ+LuYTPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHHvzfzjFQ6MAWyUTUQBjAF0lEdAkK9Z9qk/KXV9lChoBkdAcrvXlbNbDGgHTSEBaAhHQJCvfiCJ40N1fZQoaAZHQHH/V23azu5oB00dAWgIR0CQr6qZtvXLdX2UKGgGR0BvauNrCWNWaAdNIwFoCEdAkK/a5Gz8g3V9lChoBkdAcPH2/i5uqGgHTT8BaAhHQJCwwEIPbwl1fZQoaAZHQHHgIZQ53khoB01JAWgIR0CQsZj2SMcZdX2UKGgGR0BuQ1MPBi1BaAdNAAFoCEdAkLLGnbZezHV9lChoBkdAcPUvYe1a4mgHTQ8BaAhHQJCzdZMcp9Z1fZQoaAZHQHFVafOD8LtoB00wAWgIR0CQs7flZHNHdX2UKGgGR0BwOGM72criaAdNHQFoCEdAkLPJmh/RV3V9lChoBkdAchaBInSfDmgHS+1oCEdAkLQF4HHFP3V9lChoBkdAcBIwc5sCT2gHTSoBaAhHQJC0Hr1M/Ql1fZQoaAZHQHGn1Gsmv4doB0vyaAhHQJC1tpg1FYx1fZQoaAZHQHEI5npSrHVoB00nAWgIR0CQtf5GjKxLdX2UKGgGR0BwYtanrIHUaAdNVwFoCEdAkLZpwjt5U3V9lChoBkdAcq0qu8scyWgHTRMBaAhHQJC3mS0Sh8J1fZQoaAZHQG80Dslb/wRoB00mAWgIR0CQuBFZPl+3dX2UKGgGR0BxLLsNUfgaaAdL9mgIR0CQuDCm/FisdX2UKGgGR0Buo3TAnDziaAdNSwFoCEdAkLhYUSIxg3V9lChoBkdAcnDpTdcjaGgHTUIBaAhHQJC5PLs8gZF1fZQoaAZHQHG+4re67NBoB00YAWgIR0CQuhbobGWEdX2UKGgGR0BvIjjDKoycaAdNKQFoCEdAkLzVA/s3Q3V9lChoBkdAcAD3CsOoYWgHTTkBaAhHQJC969alk6N1fZQoaAZHQEnZZmI0qH5oB0vjaAhHQJC+DR7Z39t1fZQoaAZHQG+8N+1Bt1poB001AWgIR0CQvjTZxrBTdX2UKGgGR0Bxsp/CqIacaAdNYwFoCEdAkL5a4hEBsHV9lChoBkdAcIGJmNBF/mgHTVUBaAhHQJC+7R8c+7l1fZQoaAZHQHKDdxEORT1oB01OAWgIR0CQvwHwPRRedX2UKGgGR0BxpdHtnf2saAdNGwFoCEdAkL+Nld1Md3V9lChoBkdAcHTuQZGayGgHTSUBaAhHQJC/lv99+gF1fZQoaAZHQHJr54GD+R5oB0v6aAhHQJDAOYa5wwV1fZQoaAZHQG6MO801qFhoB0v1aAhHQJDAgTL4etF1fZQoaAZHQHHXGyxA0KtoB00PAWgIR0CQwXTDwYtQdX2UKGgGR0ByPVFqi48VaAdL9WgIR0CQwcJ1q33IdX2UKGgGR0BwbnsOXmeUaAdNMQFoCEdAkMKpjMFEA3V9lChoBkdAbSAkbgjyF2gHTU8CaAhHQJDCslAu7H11fZQoaAZHQHDgQWi1y/9oB0v9aAhHQJDC0NkOI691fZQoaAZHQHNZMgZCOWBoB0vsaAhHQJDETNMXaal1fZQoaAZHQG1pareZXuFoB00JAWgIR0CQxkQIUrTZdX2UKGgGR0BxaSC7K7qZaAdNIAFoCEdAkMc29cry2HV9lChoBkdAcMn90A93bGgHTTwBaAhHQJDH9HG0eEJ1fZQoaAZHQG3NYU34sVdoB00TAWgIR0CQx//qPfbcdX2UKGgGR0ByjZ2Rq46PaAdL9GgIR0CQx/pazNUwdX2UKGgGR0BxEjwhGH58aAdNKQFoCEdAkMgtCRfWtnV9lChoBkdAbLlng5zYEmgHTSMBaAhHQJDIh2C/XXl1fZQoaAZHQG6HNvGZNPBoB01YAWgIR0CQyLsg+yJLdX2UKGgGR0BvrbyOJcgRaAdNBAFoCEdAkMmgdsBQvnV9lChoBkdAckvWWhRIjGgHTWsBaAhHQJDKFsvZh8Z1fZQoaAZHQG8titihFmZoB00LAWgIR0CQysfA9FF2dX2UKGgGR0Btxwe5nUUgaAdNXgFoCEdAkN9VVHWjGnV9lChoBkdAcMMpEhJRO2gHTQwBaAhHQJDfZGWldkd1fZQoaAZHQHL0NxEORT1oB00+AWgIR0CQ34LR8c+8dX2UKGgGR0BuCx8jRlYmaAdNKQFoCEdAkN/oJqqOtHV9lChoBkdAcWiHQQcxTWgHTRwBaAhHQJDhHdHlOoJ1fZQoaAZHQHMy6zAvcrRoB0v8aAhHQJDh6Pn0TUR1fZQoaAZHQHNZ01/DtPZoB0vaaAhHQJDi7NPgvUV1fZQoaAZHQG9+U0Nz8xdoB00gAWgIR0CQ4/sWweNldX2UKGgGR0BxDchouf29aAdL+2gIR0CQ5EBRhttRdX2UKGgGR0BuaLmSyMUAaAdNHwFoCEdAkOSmf9P1tnV9lChoBkdAcLWuTzND+mgHTSEBaAhHQJDksRHww0x1fZQoaAZHQHDAr5VOsT5oB00jAWgIR0CQ5L1SOzY3dX2UKGgGR0ByWM2S+xnnaAdL/WgIR0CQ5TWxQizLdX2UKGgGR0BzRyF+NLlFaAdL1mgIR0CQ5X4J/oaDdX2UKGgGR0BwNQh9srNGaAdNUAFoCEdAkOYwgTyrgnV9lChoBkdAcW+gcLjPwGgHS/poCEdAkOZRM8HObHV9lChoBkdAcoLSi/O+qWgHTTsBaAhHQJDnbfXPJJZ1fZQoaAZHQHH0Rr30wrVoB005AWgIR0CQ6A2g3974dX2UKGgGR0Bwvk3Kji4saAdNJQFoCEdAkOhM8kleGHV9lChoBkdAcmbB91EE1WgHTUABaAhHQJDoZZRsMy91fZQoaAZHQHDdc7dSEUVoB0v4aAhHQJDpOa4MF2V1fZQoaAZHQHFt5yZKFqVoB0v6aAhHQJDqJvybx3F1fZQoaAZHQHGPHy7PIGRoB00NAWgIR0CQ68osqaw2dX2UKGgGR0BwqZAKOT7maAdNHQFoCEdAkOykMgEEDHV9lChoBkdAcE79XtBv72gHTRoBaAhHQJDs9lTWGyp1fZQoaAZHQHIVJq7AcktoB00VAWgIR0CQ7YEqUeMidX2UKGgGR0BwbxHuqm0maAdNOQFoCEdAkO4gUxmCiHV9lChoBkdAcT1MUypJgGgHTSQBaAhHQJDuZ2jfvWp1fZQoaAZHQHBQxqGlANZoB00WAWgIR0CQ7rq7yxzJdX2UKGgGR0Bw5uJP69CeaAdL9mgIR0CQ7xYUnG83dX2UKGgGR0Bv3siyIHkcaAdNWgFoCEdAkO9I46wMY3V9lChoBkdAcHKEroW56WgHTToBaAhHQJDv9s41gpl1fZQoaAZHQHOO4Ny5qdpoB00EAWgIR0CQ8HI1tO2zdX2UKGgGR0Bwe7rE9+w1aAdNNgFoCEdAkPGanWJ79nV9lChoBkdAb/CRRMvh62gHTQYBaAhHQJDyhqnFYMh1fZQoaAZHQG5tYffXPJJoB01gAWgIR0CQ80HcUM5PdX2UKGgGR0BzC6BSUC7saAdNGgFoCEdAkPTGlZX+2nV9lChoBkdAcGErNW2gF2gHTX8BaAhHQJD1YERradt1fZQoaAZHQG9QPM0P6KtoB00iAWgIR0CQ9ePQv6CUdX2UKGgGR0BvqUj5bhWHaAdNAAFoCEdAkPcvCyhSL3V9lChoBkdAcVfl+3H7xmgHTTQBaAhHQJD3dUvPC2t1fZQoaAZHQHBlfjKgZjxoB00lAWgIR0CQ94a3I+4cdX2UKGgGR0BvDe5hBqsVaAdNJAFoCEdAkPfE43m3fHV9lChoBkdAchG4/eLvTmgHS/NoCEdAkPfSDRMN+nV9lChoBkdAcbjnWJ79h2gHTSMBaAhHQJD4DcEeQuF1fZQoaAZHQHG/DJEH+qBoB01eAWgIR0CQ+E3Roh6jdX2UKGgGR0BxC3k4m1IAaAdNJwFoCEdAkPibCm/Fi3V9lChoBkdAcGMWKuSwGGgHS/xoCEdAkPmJcTrVv3V9lChoBkdAcMJwaR6ni2gHTUoBaAhHQJD6m/IsAed1fZQoaAZHQG+S8m8dxQ1oB00HAWgIR0CQ+3WOZLIxdX2UKGgGR0Bwe1s41gpjaAdNRAFoCEdAkPycxj8UEnVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a3ef0b441bd9a16b3fbc8d0d36d16d7ee53484602e2a2a38738bc4cfbc1f728
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc16af8cb391d2da33c25229299d8dcf602013a35d13ce97ddbfbeacd8ca7089
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (189 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.26331749999997, "std_reward": 19.86259895978697, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-01T12:05:07.616711"}
|