ppo-LunarLander-v2 / config.json
montanoj96's picture
uploading a PPO lunarlander-v2 trained agent
1919109
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c21b53d90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c21b53e20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c21b53eb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c21b53f40>", "_build": "<function ActorCriticPolicy._build at 0x7f9c21b54040>", "forward": "<function ActorCriticPolicy.forward at 0x7f9c21b540d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9c21b54160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c21b541f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9c21b54280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c21b54310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c21b543a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c21b54430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9c21b59400>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685395536494276168, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOXyLvww7Q/Irwev0RQbj3Ep+g7tdIPPgAAAAAAAAAAwEfXvZoWAD/O2Ms8PVgovqdIuTwS3rq6AAAAAAAAAADNpuG8XVC5P2pmCb+kbow+yaGFPKr8srsAAAAAAAAAAIBWQz1BkAM+M1yGPV8bnL58l/48xsoAPQAAAAAAAAAAwFO8PVxXUbqKhco2Pkx8Mo61mTsmc+q1AACAPwAAgD/GajC+0orHPMuvTz55dRe+/swtvOp68jwAAAAAAAAAAGbltb1SuNm5egFKtaZMq7B+6PI6MXBBNAAAAAAAAIA/AJu4PNKVkbseU587uw1CvRfR3Tw9KJk+AACAPwAAgD8a7QC+PtmXPuFpyT0ZH1K+tZkvPH/TC7wAAAAAAAAAAAAQkjtcC0a6AAQXOEuYSjNLCf03xjsttwAAgD8AAIA/GlM0vVuLAz+1exK9+7p5vq6ZhrwWIz69AAAAAAAAAACzLnS+MoOGPzoTiL6xoJS+Q1RSvshaXT0AAAAAAAAAADPUKr7DcKQ+OA0XPpz1ZL5Ysjq9iR49vAAAAAAAAAAAmr/CPDQzGT9xpDW+P999vnDrD72jtWC6AAAAAAAAAAAmZ7m97EnTuW2cizvwopU4e9RIO14U6LkAAAAAAACAP4ALgj17SqS6UE4hM1bzALGFEJA5bTDBswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAX+aKDTSeMAWyUTTcBjAF0lEdAlHbz7EYO2HV9lChoBkdAcJyKw6hg3WgHTWQBaAhHQJR35dB0ITp1fZQoaAZHQHNTHXiBGx5oB018AWgIR0CUea4Oc2BKdX2UKGgGR0BPRy9mHxjKaAdNGAFoCEdAlH0bQokRjHV9lChoBkdAcYtaAnUlRmgHTVYBaAhHQJR+f7VJ+Uh1fZQoaAZHQHCWeoP07KdoB02TAWgIR0CUgAG9YfW+dX2UKGgGR0BGndAPd2xIaAdL8GgIR0CUgbfZElVtdX2UKGgGR0BvnhDG96C2aAdNpgFoCEdAlIIgKKHfuXV9lChoBkdAPE9diUgSvmgHTQIBaAhHQJSD53GGVRl1fZQoaAZHQHH9zyOJcgRoB01dAWgIR0CUhwiPQv6CdX2UKGgGR0Bw8Fl5GBnSaAdNpAFoCEdAlJigiiZfD3V9lChoBkdAcIbv3ai9I2gHTX4BaAhHQJSZX1schkl1fZQoaAZHQGu75a3Zwn9oB02bAmgIR0CUmhOafBepdX2UKGgGR0BwM5+qioKlaAdNewFoCEdAlJpmQSzw+nV9lChoBke/863NLUTcqWgHTQQBaAhHQJSbw4xUNrl1fZQoaAZHQHKN2kvboKVoB03UAWgIR0CUnO3aSLZSdX2UKGgGR0BwPMWSEDhcaAdNhwFoCEdAlJ7wKOT7mHV9lChoBkdAcR7riEQGwGgHTQIDaAhHQJShTV5KODJ1fZQoaAZHQHCZ/zasZHdoB01JAWgIR0CUoxDYAbQ1dX2UKGgGR0ByF2Uqx1PnaAdNPQFoCEdAlKSB8MNMG3V9lChoBkdAbPUqBEroXGgHTTkBaAhHQJSkyuNgjQl1fZQoaAZHQDCuhM8HObBoB0vraAhHQJSmdgrpaA51fZQoaAZHQHDZVnEl3QloB01sAmgIR0CUp4LEk0JodX2UKGgGR0BnZFaMaS9vaAdN6ANoCEdAlKg7qIJqqXV9lChoBkdAcOFin5zo2WgHTR4BaAhHQJSqM23rleZ1fZQoaAZHQHBenMMZxaRoB01XAWgIR0CUrGqB3A2ydX2UKGgGR0Bx1xtHhCMQaAdNPAJoCEdAlK9c/t6X0HV9lChoBkdAbZWHJtBOYmgHTWoBaAhHQJSwTEVFhG91fZQoaAZHQEtiUpNKyv9oB0viaAhHQJSxQxXXAdp1fZQoaAZHQG3ojXe3x4JoB02lAWgIR0CUsahddE9ddX2UKGgGR0BxfR/NJOFhaAdNtQFoCEdAlLKp+YtxuXV9lChoBkdAbnFPnB+F12gHTVUBaAhHQJSz0ckt29t1fZQoaAZHQHKOfM0P6KtoB00MAWgIR0CUtDtp22XtdX2UKGgGR0BwYBVo6CDmaAdNZQJoCEdAlLX90/4ZdnV9lChoBkdAcCm6GgzxgGgHTYkBaAhHQJS3SOIZZSx1fZQoaAZHQHANJDu0CzVoB019AWgIR0CUt8Cp3os7dX2UKGgGR0BxBfcVQAMlaAdNTgFoCEdAlLhM/UvwmXV9lChoBkdAbmyJb+tKZmgHTRYCaAhHQJS4jG2kSEl1fZQoaAZHQG4sk2YOUdJoB01gAWgIR0CUuiBo24usdX2UKGgGR0BwcsN4JNTMaAdNYwFoCEdAlLuPo3aSLnV9lChoBkdAcbboo/iYLWgHTUMBaAhHQJS8s0pEx7B1fZQoaAZHQHCXaYVqN6xoB000AWgIR0CUvOgOz6acdX2UKGgGR0BxmHOxB3RpaAdN4wFoCEdAlL1ky57PZHV9lChoBkdAcLMyVv/BFmgHTSgBaAhHQJS+VhPTG5t1fZQoaAZHQHJwFdC3PRloB01FAWgIR0CUvkwRXfZVdX2UKGgGR0Bxxtwo9cKPaAdNQgFoCEdAlL58N6PbPHV9lChoBkdASglKCg9Ne2gHTRcBaAhHQJS/BWilBQh1fZQoaAZHQHBXfFvQ4S9oB004AWgIR0CUv7tqYZ2qdX2UKGgGR0Bx/NE4NqgzaAdNSQFoCEdAlMIQ2/BWP3V9lChoBkdANiJzxPO6d2gHS+9oCEdAlMKhXbM5fnV9lChoBkdAcK4CzkZJkGgHTS4BaAhHQJTDYM3IdU91fZQoaAZHQGy08er+5vtoB009AWgIR0CUw6sJIDoydX2UKGgGR0Bx+4IzFdcCaAdNKQNoCEdAlMO1rM1TBXV9lChoBkdAcmQl6JIlMWgHTRoBaAhHQJTH7uhK15V1fZQoaAZHQHFSXvH93r5oB00yAWgIR0CUyCe6I3zddX2UKGgGR0BvPS/mDDjzaAdNUwFoCEdAlNxx15jYqXV9lChoBkdAcI6KbayrxWgHTe8BaAhHQJTc/aZhKDl1fZQoaAZHQHIncpkPMB9oB03uAWgIR0CU3ZVrhzeXdX2UKGgGR0Bvxc+5e7cxaAdNTAFoCEdAlN5UDp1RtXV9lChoBkdAb066+WWyDGgHTSIBaAhHQJTeiV7hNud1fZQoaAZHQG/eVlXiiqRoB01JAWgIR0CU332St/4JdX2UKGgGR0Bso9ELH+6zaAdNbAFoCEdAlOBwxWT5f3V9lChoBkdAcbTkrf+CLGgHTZoBaAhHQJTivkMkQf91fZQoaAZHQHI9et8uzyBoB00oAWgIR0CU5S7wazeGdX2UKGgGR0BwGe02LpA2aAdNUAFoCEdAlOc29xp+MXV9lChoBkdAcM8gAIY3vWgHTXYBaAhHQJTnaDBdld11fZQoaAZHQG9l/82rGR5oB01DAmgIR0CU6Hszl90BdX2UKGgGR0BvawZn+Q2daAdNgwFoCEdAlOj5DiOvMnV9lChoBkdAbUX/iHZbp2gHTYUBaAhHQJTqJYHPeHl1fZQoaAZHQHDeLU1AJLNoB00lAWgIR0CU6lkwevIPdX2UKGgGR0BBi3SBshxHaAdL/2gIR0CU60LApKBedX2UKGgGR0Bw7mQCCBf8aAdNEQFoCEdAlOuNz0Yj0XV9lChoBkdAbPvtOVPepGgHTSoBaAhHQJTtWNLlFMJ1fZQoaAZHQG0Wz0QK8cxoB01kAWgIR0CU7nLmITGpdX2UKGgGR0BtcKZUkv9MaAdNSgFoCEdAlO7IoE0SAnV9lChoBkdAcKrdBSk0rWgHTTUBaAhHQJTvQkAxSHd1fZQoaAZHQCvwD1XeWOZoB0v3aAhHQJTwEQYk3S91fZQoaAZHQHDgBLK3d9FoB03IAWgIR0CU8MSpBHCodX2UKGgGR0BwBuTdLxqgaAdNhgFoCEdAlPGXdfsu4HV9lChoBkdAbxNRxcVxj2gHTWkBaAhHQJTyv5Ec81Z1fZQoaAZHQGz2bN0NjLBoB01LAWgIR0CU9YGATZg5dX2UKGgGR0BzVA+MZP2xaAdNTQFoCEdAlPXx28qWknV9lChoBkdAcdyLux8lX2gHTWwBaAhHQJT2FRO1v2p1fZQoaAZHQG/05Grjo6loB01+AWgIR0CU9rDPnjhldX2UKGgGR0BvOB0KZ2IPaAdNQAFoCEdAlPaxu89Oh3V9lChoBkdAbnl2ZAprlGgHTSgBaAhHQJT216E8JUp1fZQoaAZHQHIXYjGDL8toB01TAWgIR0CU94lqagEmdX2UKGgGR0BvAnduYQaraAdNMwFoCEdAlPkv3FkxynV9lChoBkdAb4InLJSzgWgHTTEBaAhHQJT6kr7O3Uh1fZQoaAZHQHAqdgOSW7hoB03TAWgIR0CU/mSLZSNwdX2UKGgGR0BwN8e0Xxe+aAdNiwFoCEdAlP6JRKpT/HV9lChoBkdAcLRTy8SPEWgHTXIBaAhHQJT/XpmmLtN1fZQoaAZHQG2IZqEeyRloB02MAWgIR0CVAXUwBYFJdX2UKGgGR0BuPodU83dcaAdNFQFoCEdAlQIYre67NHV9lChoBkdAbhmERJ2+wmgHTW4BaAhHQJUCf0WdmQN1fZQoaAZHQHHSror4FidoB02gAWgIR0CVA2fiPyTZdX2UKGgGR0BsUZ9d/rjYaAdNMAFoCEdAlQP8oH9m6HV9lChoBkdAcCibVz6rNmgHTYsBaAhHQJUGxuVHFxZ1fZQoaAZHQG7zxFiKBNFoB005AWgIR0CVCUk2xY7rdX2UKGgGR0BwfHjzZpSKaAdNtwFoCEdAlQl99+gDinVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}