sac / 2.py
monstaws's picture
Upload folder using huggingface_hub
a86c385 verified
# %%
# ============================================================================
# CELL 1: PYTORCH GPU SETUP (KAGGLE 30GB GPU)
# ============================================================================
!pip install -q ta
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
print("="*70)
print(" PYTORCH GPU SETUP (30GB GPU)")
print("="*70)
# ============================================================================
# GPU CONFIGURATION FOR MAXIMUM PERFORMANCE
# ============================================================================
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.is_available():
# Get GPU info
gpu_name = torch.cuda.get_device_name(0)
gpu_mem = torch.cuda.get_device_properties(0).total_memory / 1e9
print(f"✅ GPU: {gpu_name}")
print(f"✅ GPU Memory: {gpu_mem:.1f} GB")
# Enable TF32 for faster matmul (Ampere GPUs: A100, RTX 30xx, 40xx)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
print("✅ TF32: Enabled (2-3x speedup on Ampere)")
# Enable cuDNN autotuner
torch.backends.cudnn.benchmark = True
print("✅ cuDNN benchmark: Enabled")
# Set default tensor type to CUDA
torch.set_default_device('cuda')
print("✅ Default device: CUDA")
else:
print("⚠️ No GPU detected, using CPU")
print(f"\n✅ PyTorch: {torch.__version__}")
print(f"✅ Device: {device}")
print("="*70)
# %%
# ============================================================================
# CELL 2: LOAD DATA + FEATURES + ENVIRONMENT (MULTI-TIMEFRAME)
# ============================================================================
import numpy as np
import pandas as pd
import gym
from gym import spaces
from ta.momentum import RSIIndicator, StochasticOscillator, ROCIndicator, WilliamsRIndicator
from ta.trend import MACD, EMAIndicator, SMAIndicator, ADXIndicator, CCIIndicator
from ta.volatility import BollingerBands, AverageTrueRange
from ta.volume import OnBalanceVolumeIndicator
import os
print("="*70)
print(" LOADING MULTI-TIMEFRAME DATA + FEATURES")
print("="*70)
# ============================================================================
# HELPER: CALCULATE INDICATORS FOR ANY TIMEFRAME
# ============================================================================
def calculate_indicators(df, suffix=''):
"""Calculate all technical indicators for a given dataframe"""
data = df.copy()
s = f'_{suffix}' if suffix else ''
# Momentum
data[f'rsi_14{s}'] = RSIIndicator(close=data['close'], window=14).rsi() / 100
data[f'rsi_7{s}'] = RSIIndicator(close=data['close'], window=7).rsi() / 100
stoch = StochasticOscillator(high=data['high'], low=data['low'], close=data['close'], window=14)
data[f'stoch_k{s}'] = stoch.stoch() / 100
data[f'stoch_d{s}'] = stoch.stoch_signal() / 100
roc = ROCIndicator(close=data['close'], window=12)
data[f'roc_12{s}'] = np.tanh(roc.roc() / 100)
williams = WilliamsRIndicator(high=data['high'], low=data['low'], close=data['close'], lbp=14)
data[f'williams_r{s}'] = (williams.williams_r() + 100) / 100
macd = MACD(close=data['close'])
data[f'macd{s}'] = np.tanh(macd.macd() / data['close'] * 100)
data[f'macd_signal{s}'] = np.tanh(macd.macd_signal() / data['close'] * 100)
data[f'macd_diff{s}'] = np.tanh(macd.macd_diff() / data['close'] * 100)
# Trend
data[f'sma_20{s}'] = SMAIndicator(close=data['close'], window=20).sma_indicator()
data[f'sma_50{s}'] = SMAIndicator(close=data['close'], window=50).sma_indicator()
data[f'ema_12{s}'] = EMAIndicator(close=data['close'], window=12).ema_indicator()
data[f'ema_26{s}'] = EMAIndicator(close=data['close'], window=26).ema_indicator()
data[f'price_vs_sma20{s}'] = (data['close'] - data[f'sma_20{s}']) / data[f'sma_20{s}']
data[f'price_vs_sma50{s}'] = (data['close'] - data[f'sma_50{s}']) / data[f'sma_50{s}']
adx = ADXIndicator(high=data['high'], low=data['low'], close=data['close'], window=14)
data[f'adx{s}'] = adx.adx() / 100
data[f'adx_pos{s}'] = adx.adx_pos() / 100
data[f'adx_neg{s}'] = adx.adx_neg() / 100
cci = CCIIndicator(high=data['high'], low=data['low'], close=data['close'], window=20)
data[f'cci{s}'] = np.tanh(cci.cci() / 100)
# Volatility
bb = BollingerBands(close=data['close'], window=20, window_dev=2)
data[f'bb_width{s}'] = (bb.bollinger_hband() - bb.bollinger_lband()) / bb.bollinger_mavg()
data[f'bb_position{s}'] = (data['close'] - bb.bollinger_lband()) / (bb.bollinger_hband() - bb.bollinger_lband())
atr = AverageTrueRange(high=data['high'], low=data['low'], close=data['close'], window=14)
data[f'atr_percent{s}'] = atr.average_true_range() / data['close']
# Volume
data[f'volume_ma_20{s}'] = data['volume'].rolling(20).mean()
data[f'volume_ratio{s}'] = data['volume'] / (data[f'volume_ma_20{s}'] + 1e-8)
obv = OnBalanceVolumeIndicator(close=data['close'], volume=data['volume'])
data[f'obv_slope{s}'] = (obv.on_balance_volume().diff(5) / (obv.on_balance_volume().shift(5).abs() + 1e-8))
# Price action
data[f'returns_1{s}'] = data['close'].pct_change()
data[f'returns_5{s}'] = data['close'].pct_change(5)
data[f'returns_20{s}'] = data['close'].pct_change(20)
data[f'volatility_20{s}'] = data[f'returns_1{s}'].rolling(20).std()
data[f'body_size{s}'] = abs(data['close'] - data['open']) / (data['open'] + 1e-8)
data[f'high_20{s}'] = data['high'].rolling(20).max()
data[f'low_20{s}'] = data['low'].rolling(20).min()
data[f'price_position{s}'] = (data['close'] - data[f'low_20{s}']) / (data[f'high_20{s}'] - data[f'low_20{s}'] + 1e-8)
# Drop intermediate columns
cols_to_drop = [c for c in [f'sma_20{s}', f'sma_50{s}', f'ema_12{s}', f'ema_26{s}',
f'volume_ma_20{s}', f'high_20{s}', f'low_20{s}'] if c in data.columns]
data = data.drop(columns=cols_to_drop)
return data
def load_and_clean_btc(filepath):
"""Load and clean BTC data from CSV"""
df = pd.read_csv(filepath)
column_mapping = {'Open time': 'timestamp', 'Open': 'open', 'High': 'high',
'Low': 'low', 'Close': 'close', 'Volume': 'volume'}
df = df.rename(columns=column_mapping)
df['timestamp'] = pd.to_datetime(df['timestamp'])
df.set_index('timestamp', inplace=True)
df = df[['open', 'high', 'low', 'close', 'volume']]
for col in df.columns:
df[col] = pd.to_numeric(df[col], errors='coerce')
df = df[df.index >= '2021-01-01']
df = df[~df.index.duplicated(keep='first')]
df = df.replace(0, np.nan).dropna().sort_index()
return df
# ============================================================================
# 1. LOAD ALL TIMEFRAMES
# ============================================================================
data_path = '/kaggle/input/bitcoin-historical-datasets-2018-2024/'
print("📊 Loading 15-minute data...")
btc_15m = load_and_clean_btc(data_path + 'btc_15m_data_2018_to_2025.csv')
print(f" ✅ 15m: {len(btc_15m):,} candles")
print("📊 Loading 1-hour data...")
btc_1h = load_and_clean_btc(data_path + 'btc_1h_data_2018_to_2025.csv')
print(f" ✅ 1h: {len(btc_1h):,} candles")
print("📊 Loading 4-hour data...")
btc_4h = load_and_clean_btc(data_path + 'btc_4h_data_2018_to_2025.csv')
print(f" ✅ 4h: {len(btc_4h):,} candles")
# ============================================================================
# 2. LOAD FEAR & GREED INDEX
# ============================================================================
fgi_loaded = False
try:
fgi_path = '/kaggle/input/btc-usdt-4h-ohlc-fgi-daily-2020/'
files = os.listdir(fgi_path)
for filename in files:
if filename.endswith('.csv'):
fgi_data = pd.read_csv(fgi_path + filename)
time_col = [c for c in fgi_data.columns if 'time' in c.lower() or 'date' in c.lower()]
if time_col:
fgi_data['timestamp'] = pd.to_datetime(fgi_data[time_col[0]])
else:
fgi_data['timestamp'] = pd.to_datetime(fgi_data.iloc[:, 0])
fgi_data.set_index('timestamp', inplace=True)
fgi_col = [c for c in fgi_data.columns if 'fgi' in c.lower() or 'fear' in c.lower() or 'greed' in c.lower()]
if fgi_col:
fgi_data = fgi_data[[fgi_col[0]]].rename(columns={fgi_col[0]: 'fgi'})
fgi_loaded = True
print(f"✅ Fear & Greed loaded: {len(fgi_data):,} values")
break
except:
pass
if not fgi_loaded:
fgi_data = pd.DataFrame(index=btc_15m.index)
fgi_data['fgi'] = 50
print("⚠️ Using neutral FGI values")
# ============================================================================
# 3. CALCULATE INDICATORS FOR EACH TIMEFRAME
# ============================================================================
print("\n🔧 Calculating indicators for 15m...")
data_15m = calculate_indicators(btc_15m, suffix='15m')
print("🔧 Calculating indicators for 1h...")
data_1h = calculate_indicators(btc_1h, suffix='1h')
print("🔧 Calculating indicators for 4h...")
data_4h = calculate_indicators(btc_4h, suffix='4h')
# ============================================================================
# 4. MERGE HIGHER TIMEFRAMES INTO 15M (FORWARD FILL)
# ============================================================================
print("\n🔗 Merging timeframes...")
cols_1h = [c for c in data_1h.columns if c not in ['open', 'high', 'low', 'close', 'volume']]
cols_4h = [c for c in data_4h.columns if c not in ['open', 'high', 'low', 'close', 'volume']]
data = data_15m.copy()
data = data.join(data_1h[cols_1h], how='left')
data = data.join(data_4h[cols_4h], how='left')
for col in cols_1h + cols_4h:
data[col] = data[col].fillna(method='ffill')
# Merge FGI
data = data.join(fgi_data, how='left')
data['fgi'] = data['fgi'].fillna(method='ffill').fillna(method='bfill').fillna(50)
# Fear & Greed derived features
data['fgi_normalized'] = (data['fgi'] - 50) / 50
data['fgi_change'] = data['fgi'].diff() / 50
data['fgi_ma7'] = data['fgi'].rolling(7).mean()
data['fgi_vs_ma'] = (data['fgi'] - data['fgi_ma7']) / 50
# Time features
data['hour'] = data.index.hour / 24
data['day_of_week'] = data.index.dayofweek / 7
data['us_session'] = ((data.index.hour >= 14) & (data.index.hour < 21)).astype(float)
btc_features = data.dropna()
feature_cols = [col for col in btc_features.columns
if col not in ['open', 'high', 'low', 'close', 'volume', 'fgi', 'fgi_ma7']]
print(f"\n✅ Multi-timeframe features complete!")
print(f" 15m features: {len([c for c in feature_cols if '15m' in c])}")
print(f" 1h features: {len([c for c in feature_cols if '1h' in c])}")
print(f" 4h features: {len([c for c in feature_cols if '4h' in c])}")
print(f" Other features: {len([c for c in feature_cols if '15m' not in c and '1h' not in c and '4h' not in c])}")
print(f" TOTAL features: {len(feature_cols)}")
print(f" Clean data: {len(btc_features):,} candles")
# ============================================================================
# 5. TRAIN/VALID/TEST SPLITS
# ============================================================================
print("\n📊 Creating Data Splits...")
train_size = int(len(btc_features) * 0.70)
valid_size = int(len(btc_features) * 0.15)
train_data = btc_features.iloc[:train_size].copy()
valid_data = btc_features.iloc[train_size:train_size+valid_size].copy()
test_data = btc_features.iloc[train_size+valid_size:].copy()
print(f" Train: {len(train_data):,} | Valid: {len(valid_data):,} | Test: {len(test_data):,}")
# Store full data for walk-forward
full_data = btc_features.copy()
# ============================================================================
# 6. ROLLING NORMALIZATION CLASS
# ============================================================================
class RollingNormalizer:
"""
Rolling z-score normalization to prevent look-ahead bias.
Uses a rolling window to calculate mean and std.
"""
def __init__(self, window_size=2880): # 2880 = 30 days of 15m candles
self.window_size = window_size
self.feature_cols = None
def fit_transform(self, df, feature_cols):
"""Apply rolling normalization to dataframe"""
self.feature_cols = feature_cols
result = df.copy()
for col in feature_cols:
rolling_mean = df[col].rolling(window=self.window_size, min_periods=100).mean()
rolling_std = df[col].rolling(window=self.window_size, min_periods=100).std()
result[col] = (df[col] - rolling_mean) / (rolling_std + 1e-8)
# Clip extreme values
result[feature_cols] = result[feature_cols].clip(-5, 5)
# Fill NaN at start with 0 (neutral)
result[feature_cols] = result[feature_cols].fillna(0)
return result
print("✅ RollingNormalizer class defined")
# ============================================================================
# 7. TRADING ENVIRONMENT WITH DSR + RANDOM FLIP AUGMENTATION
# ============================================================================
class BitcoinTradingEnv(gym.Env):
"""
Trading environment with:
- Differential Sharpe Ratio (DSR) reward with warmup
- Previous action in state (to learn cost of switching)
- Transaction fee ramping (0 -> 0.1% after warmup)
- Random flip data augmentation (50% chance to invert market)
"""
def __init__(self, df, initial_balance=10000, episode_length=500,
base_transaction_fee=0.001, # 0.1% max fee
dsr_eta=0.01): # DSR adaptation rate
super().__init__()
self.df = df.reset_index(drop=True)
self.initial_balance = initial_balance
self.episode_length = episode_length
self.base_transaction_fee = base_transaction_fee
self.dsr_eta = dsr_eta
# Fee ramping (controlled externally via set_fee_multiplier)
self.fee_multiplier = 0.0
# Training mode for data augmentation (random flips)
self.training_mode = True
self.flip_sign = 1.0 # Will be -1 or +1 for augmentation
# DSR warmup period (return 0 reward until EMAs settle)
self.dsr_warmup_steps = 100
self.feature_cols = [col for col in df.columns
if col not in ['open', 'high', 'low', 'close', 'volume', 'fgi', 'fgi_ma7']]
self.action_space = spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float32)
# +6 for: position, total_return, drawdown, returns_1, rsi_14, PREVIOUS_ACTION
self.observation_space = spaces.Box(
low=-10, high=10,
shape=(len(self.feature_cols) + 6,),
dtype=np.float32
)
self.reset()
def set_fee_multiplier(self, multiplier):
"""Set fee multiplier (0.0 to 1.0) for fee ramping"""
self.fee_multiplier = np.clip(multiplier, 0.0, 1.0)
def set_training_mode(self, training=True):
"""Set training mode (enables random flips for augmentation)"""
self.training_mode = training
@property
def current_fee(self):
"""Current transaction fee based on multiplier"""
return self.base_transaction_fee * self.fee_multiplier
def reset(self):
max_start = len(self.df) - self.episode_length - 1
self.start_idx = np.random.randint(100, max(101, max_start))
self.current_step = 0
self.balance = self.initial_balance
self.position = 0.0
self.entry_price = 0.0
self.total_value = self.initial_balance
self.prev_total_value = self.initial_balance
self.max_value = self.initial_balance
# Previous action for state
self.prev_action = 0.0
# DSR variables (Differential Sharpe Ratio)
self.A_t = 0.0 # EMA of returns
self.B_t = 0.0 # EMA of squared returns
# Position tracking
self.long_steps = 0
self.short_steps = 0
self.neutral_steps = 0
self.num_trades = 0
# Random flip for data augmentation (50% chance during training)
# This inverts price movements: what was bullish becomes bearish
if self.training_mode:
self.flip_sign = -1.0 if np.random.random() < 0.5 else 1.0
else:
self.flip_sign = 1.0 # No flip during eval
return self._get_obs()
def _get_obs(self):
idx = self.start_idx + self.current_step
features = self.df.loc[idx, self.feature_cols].values.copy()
# Apply random flip augmentation to return-based features
# This inverts bullish/bearish signals when flip_sign = -1
if self.flip_sign < 0:
for i, col in enumerate(self.feature_cols):
if any(x in col.lower() for x in ['returns', 'roc', 'macd', 'cci', 'obv', 'sentiment']):
features[i] *= self.flip_sign
total_return = (self.total_value / self.initial_balance) - 1
drawdown = (self.max_value - self.total_value) / self.max_value if self.max_value > 0 else 0
# Apply flip to market returns shown in portfolio info
market_return = self.df.loc[idx, 'returns_1_15m'] * self.flip_sign
portfolio_info = np.array([
self.position,
total_return,
drawdown,
market_return,
self.df.loc[idx, 'rsi_14_15m'],
self.prev_action
], dtype=np.float32)
obs = np.concatenate([features, portfolio_info])
return np.clip(obs, -10, 10).astype(np.float32)
def _calculate_dsr(self, return_t):
"""
Calculate Differential Sharpe Ratio reward.
DSR = (B_{t-1} * ΔA_t - 0.5 * A_{t-1} * ΔB_t) / (B_{t-1} - A_{t-1}^2)^1.5
"""
eta = self.dsr_eta
A_prev = self.A_t
B_prev = self.B_t
delta_A = eta * (return_t - A_prev)
delta_B = eta * (return_t**2 - B_prev)
self.A_t = A_prev + delta_A
self.B_t = B_prev + delta_B
variance = B_prev - A_prev**2
if variance <= 1e-8:
return return_t
dsr = (B_prev * delta_A - 0.5 * A_prev * delta_B) / (variance ** 1.5 + 1e-8)
return np.clip(dsr, -0.5, 0.5)
def step(self, action):
idx = self.start_idx + self.current_step
current_price = self.df.loc[idx, 'close']
target_position = np.clip(action[0], -1.0, 1.0)
self.prev_total_value = self.total_value
# Position change logic with transaction costs
if abs(target_position - self.position) > 0.1:
if self.position != 0:
self._close_position(current_price)
if abs(target_position) > 0.1:
self._open_position(target_position, current_price)
self.num_trades += 1
self._update_total_value(current_price)
self.max_value = max(self.max_value, self.total_value)
# Track position type
if self.position > 0.1:
self.long_steps += 1
elif self.position < -0.1:
self.short_steps += 1
else:
self.neutral_steps += 1
self.current_step += 1
done = (self.current_step >= self.episode_length) or (self.total_value <= self.initial_balance * 0.5)
# ============ DSR REWARD WITH WARMUP ============
raw_return = (self.total_value - self.prev_total_value) / self.initial_balance
# Apply flip_sign to reward (if we flipped the market, flip what "good" means)
raw_return *= self.flip_sign
# DSR Warmup: Return tiny penalty for first N steps to let EMAs settle
if self.current_step < self.dsr_warmup_steps:
reward = -0.0001 # Tiny constant penalty during warmup
else:
reward = self._calculate_dsr(raw_return)
self.prev_action = target_position
obs = self._get_obs()
info = {
'total_value': self.total_value,
'position': self.position,
'long_steps': self.long_steps,
'short_steps': self.short_steps,
'neutral_steps': self.neutral_steps,
'num_trades': self.num_trades,
'current_fee': self.current_fee,
'flip_sign': self.flip_sign,
'raw_return': raw_return,
'dsr_reward': reward
}
return obs, reward, done, info
def _update_total_value(self, current_price):
if self.position != 0:
if self.position > 0:
pnl = self.position * self.initial_balance * (current_price / self.entry_price - 1)
else:
pnl = abs(self.position) * self.initial_balance * (1 - current_price / self.entry_price)
self.total_value = self.balance + pnl
else:
self.total_value = self.balance
def _open_position(self, size, price):
self.position = size
self.entry_price = price
fee_cost = abs(size) * self.initial_balance * self.current_fee
self.balance -= fee_cost
def _close_position(self, price):
if self.position > 0:
pnl = self.position * self.initial_balance * (price / self.entry_price - 1)
else:
pnl = abs(self.position) * self.initial_balance * (1 - price / self.entry_price)
fee_cost = abs(pnl) * self.current_fee
self.balance += pnl - fee_cost
self.position = 0.0
print("✅ Environment class ready:")
print(" - DSR reward with 100-step warmup")
print(" - Random flip augmentation (50% probability)")
print(" - Previous action in state")
print(" - Transaction fee ramping")
print("="*70)
# %%
# ============================================================================
# CELL 3: LOAD SENTIMENT DATA
# ============================================================================
print("="*70)
print(" LOADING SENTIMENT DATA")
print("="*70)
sentiment_file = '/kaggle/input/bitcoin-news-with-sentimen/bitcoin_news_3hour_intervals_with_sentiment.csv'
try:
sentiment_raw = pd.read_csv(sentiment_file)
def parse_time_range(time_str):
parts = str(time_str).split(' ')
if len(parts) >= 2:
date = parts[0]
time_range = parts[1]
start_time = time_range.split('-')[0]
return f"{date} {start_time}:00"
return time_str
sentiment_raw['timestamp'] = sentiment_raw['time_interval'].apply(parse_time_range)
sentiment_raw['timestamp'] = pd.to_datetime(sentiment_raw['timestamp'])
sentiment_raw = sentiment_raw.set_index('timestamp').sort_index()
sentiment_clean = pd.DataFrame(index=sentiment_raw.index)
sentiment_clean['prob_bullish'] = pd.to_numeric(sentiment_raw['prob_bullish'], errors='coerce')
sentiment_clean['prob_bearish'] = pd.to_numeric(sentiment_raw['prob_bearish'], errors='coerce')
sentiment_clean['prob_neutral'] = pd.to_numeric(sentiment_raw['prob_neutral'], errors='coerce')
sentiment_clean['confidence'] = pd.to_numeric(sentiment_raw['sentiment_confidence'], errors='coerce')
sentiment_clean = sentiment_clean.dropna()
# Merge with data
for df in [train_data, valid_data, test_data]:
df_temp = df.join(sentiment_clean, how='left')
for col in ['prob_bullish', 'prob_bearish', 'prob_neutral', 'confidence']:
df[col] = df_temp[col].fillna(method='ffill').fillna(method='bfill').fillna(0.33 if col != 'confidence' else 0.5)
df['sentiment_net'] = df['prob_bullish'] - df['prob_bearish']
df['sentiment_strength'] = (df['prob_bullish'] - df['prob_bearish']).abs()
df['sentiment_weighted'] = df['sentiment_net'] * df['confidence']
print(f"✅ Sentiment loaded: {len(sentiment_clean):,} records")
print(f"✅ Features added: 7 sentiment features")
except Exception as e:
print(f"⚠️ Sentiment not loaded: {e}")
for df in [train_data, valid_data, test_data]:
df['sentiment_net'] = 0
df['sentiment_strength'] = 0
df['sentiment_weighted'] = 0
print("="*70)
# %%
# ============================================================================
# CELL 4: ROLLING NORMALIZATION + CREATE ENVIRONMENTS
# ============================================================================
print("="*70)
print(" ROLLING NORMALIZATION + CREATING ENVIRONMENTS")
print("="*70)
# Get feature columns (all except OHLCV and intermediate columns)
feature_cols = [col for col in train_data.columns
if col not in ['open', 'high', 'low', 'close', 'volume', 'fgi', 'fgi_ma7']]
print(f"📊 Total features: {len(feature_cols)}")
# ============================================================================
# ROLLING NORMALIZATION (Prevents look-ahead bias!)
# Uses only past data for normalization at each point
# ============================================================================
rolling_normalizer = RollingNormalizer(window_size=2880) # 30 days of 15m data
print("🔄 Applying rolling normalization (window=2880)...")
# Apply rolling normalization to each split
train_data_norm = rolling_normalizer.fit_transform(train_data, feature_cols)
valid_data_norm = rolling_normalizer.fit_transform(valid_data, feature_cols)
test_data_norm = rolling_normalizer.fit_transform(test_data, feature_cols)
print("✅ Rolling normalization complete (no look-ahead bias!)")
# Create environments
train_env = BitcoinTradingEnv(train_data_norm, episode_length=500)
valid_env = BitcoinTradingEnv(valid_data_norm, episode_length=500)
test_env = BitcoinTradingEnv(test_data_norm, episode_length=500)
state_dim = train_env.observation_space.shape[0]
action_dim = 1
print(f"\n✅ Environments created:")
print(f" State dim: {state_dim} (features={len(feature_cols)} + portfolio=6)")
print(f" Action dim: {action_dim}")
print(f" Train samples: {len(train_data):,}")
print(f" Fee starts at: 0% (ramps to 0.1% after warmup)")
print("="*70)
# %%
# ============================================================================
# CELL 5: PYTORCH SAC AGENT (GPU OPTIMIZED)
# ============================================================================
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Normal
print("="*70)
print(" PYTORCH SAC AGENT")
print("="*70)
# ============================================================================
# ACTOR NETWORK (Policy)
# ============================================================================
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=512):
super().__init__()
# Larger network for 90+ features: 512 -> 512 -> 256 -> output
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, hidden_dim // 2) # Taper down
self.mean = nn.Linear(hidden_dim // 2, action_dim)
self.log_std = nn.Linear(hidden_dim // 2, action_dim)
self.LOG_STD_MIN = -20
self.LOG_STD_MAX = 2
def forward(self, state):
x = F.relu(self.fc1(state))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
mean = self.mean(x)
log_std = self.log_std(x)
log_std = torch.clamp(log_std, self.LOG_STD_MIN, self.LOG_STD_MAX)
return mean, log_std
def sample(self, state):
mean, log_std = self.forward(state)
std = log_std.exp()
normal = Normal(mean, std)
x_t = normal.rsample() # Reparameterization trick
action = torch.tanh(x_t)
# Log prob with tanh correction
log_prob = normal.log_prob(x_t)
log_prob -= torch.log(1 - action.pow(2) + 1e-6)
log_prob = log_prob.sum(dim=-1, keepdim=True)
return action, log_prob, mean
# ============================================================================
# CRITIC NETWORK (Twin Q-functions)
# ============================================================================
class Critic(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=512):
super().__init__()
# Q1 network: 512 -> 512 -> 256 -> 1
self.fc1_1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.fc1_2 = nn.Linear(hidden_dim, hidden_dim)
self.fc1_3 = nn.Linear(hidden_dim, hidden_dim // 2)
self.fc1_out = nn.Linear(hidden_dim // 2, 1)
# Q2 network: 512 -> 512 -> 256 -> 1
self.fc2_1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.fc2_2 = nn.Linear(hidden_dim, hidden_dim)
self.fc2_3 = nn.Linear(hidden_dim, hidden_dim // 2)
self.fc2_out = nn.Linear(hidden_dim // 2, 1)
def forward(self, state, action):
x = torch.cat([state, action], dim=-1)
# Q1
q1 = F.relu(self.fc1_1(x))
q1 = F.relu(self.fc1_2(q1))
q1 = F.relu(self.fc1_3(q1))
q1 = self.fc1_out(q1)
# Q2
q2 = F.relu(self.fc2_1(x))
q2 = F.relu(self.fc2_2(q2))
q2 = F.relu(self.fc2_3(q2))
q2 = self.fc2_out(q2)
return q1, q2
def q1(self, state, action):
x = torch.cat([state, action], dim=-1)
q1 = F.relu(self.fc1_1(x))
q1 = F.relu(self.fc1_2(q1))
q1 = F.relu(self.fc1_3(q1))
return self.fc1_out(q1)
# ============================================================================
# SAC AGENT
# ============================================================================
class SACAgent:
def __init__(self, state_dim, action_dim, device,
actor_lr=3e-4, critic_lr=3e-4, alpha_lr=3e-4,
gamma=0.99, tau=0.005, initial_alpha=0.2):
self.device = device
self.gamma = gamma
self.tau = tau
self.action_dim = action_dim
# Networks
self.actor = Actor(state_dim, action_dim).to(device)
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
# Optimizers
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=critic_lr)
# Entropy (auto-tuning alpha)
self.target_entropy = -action_dim
self.log_alpha = torch.tensor(np.log(initial_alpha), requires_grad=True, device=device)
self.alpha_optimizer = optim.Adam([self.log_alpha], lr=alpha_lr)
@property
def alpha(self):
return self.log_alpha.exp()
def select_action(self, state, deterministic=False):
with torch.no_grad():
state = torch.FloatTensor(state).unsqueeze(0).to(self.device)
if deterministic:
mean, _ = self.actor(state)
action = torch.tanh(mean)
else:
action, _, _ = self.actor.sample(state)
return action.cpu().numpy()[0]
def update(self, batch):
states, actions, rewards, next_states, dones = batch
states = torch.FloatTensor(states).to(self.device)
actions = torch.FloatTensor(actions).to(self.device)
rewards = torch.FloatTensor(rewards).unsqueeze(1).to(self.device)
next_states = torch.FloatTensor(next_states).to(self.device)
dones = torch.FloatTensor(dones).unsqueeze(1).to(self.device)
# ============ Update Critic ============
with torch.no_grad():
next_actions, next_log_probs, _ = self.actor.sample(next_states)
q1_target, q2_target = self.critic_target(next_states, next_actions)
q_target = torch.min(q1_target, q2_target)
target_q = rewards + (1 - dones) * self.gamma * (q_target - self.alpha * next_log_probs)
q1, q2 = self.critic(states, actions)
critic_loss = F.mse_loss(q1, target_q) + F.mse_loss(q2, target_q)
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# ============ Update Actor ============
new_actions, log_probs, _ = self.actor.sample(states)
q1_new, q2_new = self.critic(states, new_actions)
q_new = torch.min(q1_new, q2_new)
actor_loss = (self.alpha * log_probs - q_new).mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# ============ Update Alpha ============
alpha_loss = -(self.log_alpha * (log_probs.detach() + self.target_entropy)).mean()
self.alpha_optimizer.zero_grad()
alpha_loss.backward()
self.alpha_optimizer.step()
# ============ Update Target Network ============
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
return {
'critic_loss': critic_loss.item(),
'actor_loss': actor_loss.item(),
'alpha': self.alpha.item()
}
print("✅ Actor: 512→512→256→1")
print("✅ Critic: Twin Q (512→512→256→1)")
print("✅ SAC Agent with auto-tuning alpha")
print("="*70)
# %%
# ============================================================================
# CELL 6: REPLAY BUFFER (GPU-FRIENDLY)
# ============================================================================
print("="*70)
print(" REPLAY BUFFER")
print("="*70)
class ReplayBuffer:
def __init__(self, state_dim, action_dim, max_size=1_000_000):
self.max_size = max_size
self.ptr = 0
self.size = 0
self.states = np.zeros((max_size, state_dim), dtype=np.float32)
self.actions = np.zeros((max_size, action_dim), dtype=np.float32)
self.rewards = np.zeros((max_size, 1), dtype=np.float32)
self.next_states = np.zeros((max_size, state_dim), dtype=np.float32)
self.dones = np.zeros((max_size, 1), dtype=np.float32)
mem_gb = (self.states.nbytes + self.actions.nbytes + self.rewards.nbytes +
self.next_states.nbytes + self.dones.nbytes) / 1e9
print(f"📦 Buffer capacity: {max_size:,} | Memory: {mem_gb:.2f} GB")
def add(self, state, action, reward, next_state, done):
self.states[self.ptr] = state
self.actions[self.ptr] = action
self.rewards[self.ptr] = reward
self.next_states[self.ptr] = next_state
self.dones[self.ptr] = done
self.ptr = (self.ptr + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def sample(self, batch_size):
idx = np.random.randint(0, self.size, size=batch_size)
return (
self.states[idx],
self.actions[idx],
self.rewards[idx],
self.next_states[idx],
self.dones[idx]
)
print("✅ ReplayBuffer defined")
print("="*70)
# %%
# ============================================================================
# CELL 7: CREATE AGENT + BUFFER
# ============================================================================
print("="*70)
print(" CREATING AGENT + BUFFER")
print("="*70)
# Create SAC agent
agent = SACAgent(
state_dim=state_dim,
action_dim=action_dim,
device=device,
actor_lr=3e-4,
critic_lr=3e-4,
alpha_lr=3e-4,
gamma=0.99,
tau=0.005,
initial_alpha=0.2
)
# Create replay buffer
buffer = ReplayBuffer(
state_dim=state_dim,
action_dim=action_dim,
max_size=1_000_000
)
# Count parameters
total_params = sum(p.numel() for p in agent.actor.parameters()) + \
sum(p.numel() for p in agent.critic.parameters())
print(f"\n✅ Agent created on {device}")
print(f" Actor params: {sum(p.numel() for p in agent.actor.parameters()):,}")
print(f" Critic params: {sum(p.numel() for p in agent.critic.parameters()):,}")
print(f" Total params: {total_params:,}")
print("="*70)
# %%
# ============================================================================
# CELL 8: TRAINING FUNCTION (GPU OPTIMIZED + FEE RAMPING)
# ============================================================================
from tqdm.notebook import tqdm
import time
print("="*70)
print(" TRAINING FUNCTION")
print("="*70)
def train_sac(agent, env, valid_env, buffer,
total_timesteps=700_000,
warmup_steps=10_000,
batch_size=1024,
update_freq=1,
fee_warmup_steps=100_000, # When to start fee ramping
fee_ramp_steps=100_000, # Steps to ramp from 0 to max fee
save_path="sac_v9"):
print(f"\n🚀 Training Configuration:")
print(f" Total steps: {total_timesteps:,}")
print(f" Warmup: {warmup_steps:,}")
print(f" Batch size: {batch_size}")
print(f" Fee warmup: {fee_warmup_steps:,} steps (then ramp over {fee_ramp_steps:,})")
print(f" Data augmentation: Random flips (50% probability)")
print(f" DSR warmup: 100 steps per episode (0 reward)")
print(f" Device: {agent.device}")
# Set training modes for augmentation
env.set_training_mode(True) # Enable random flips
valid_env.set_training_mode(False) # No augmentation for validation
# Stats tracking
episode_rewards = []
episode_lengths = []
eval_rewards = []
best_reward = -np.inf
best_eval = -np.inf
# Training stats
critic_losses = []
actor_losses = []
state = env.reset()
episode_reward = 0
episode_length = 0
episode_count = 0
start_time = time.time()
pbar = tqdm(range(total_timesteps), desc="Training")
for step in pbar:
# ============ FEE RAMPING CURRICULUM ============
# 0 fees until fee_warmup_steps, then ramp to 1.0 over fee_ramp_steps
if step < fee_warmup_steps:
fee_multiplier = 0.0
else:
progress = (step - fee_warmup_steps) / fee_ramp_steps
fee_multiplier = min(1.0, progress)
env.set_fee_multiplier(fee_multiplier)
valid_env.set_fee_multiplier(fee_multiplier)
# Select action
if step < warmup_steps:
action = env.action_space.sample()
else:
action = agent.select_action(state, deterministic=False)
# Step environment
next_state, reward, done, info = env.step(action)
# Store transition
buffer.add(state, action, reward, next_state, float(done))
state = next_state
episode_reward += reward
episode_length += 1
# Update agent
stats = None
if step >= warmup_steps and step % update_freq == 0:
batch = buffer.sample(batch_size)
stats = agent.update(batch)
critic_losses.append(stats['critic_loss'])
actor_losses.append(stats['actor_loss'])
# Episode end
if done:
episode_rewards.append(episode_reward)
episode_lengths.append(episode_length)
episode_count += 1
# Calculate episode stats
final_value = info.get('total_value', 10000)
pnl_pct = (final_value / 10000 - 1) * 100
num_trades = info.get('num_trades', 0)
current_fee = info.get('current_fee', 0) * 100 # Convert to %
# Get position distribution
long_steps = info.get('long_steps', 0)
short_steps = info.get('short_steps', 0)
neutral_steps = info.get('neutral_steps', 0)
total_active = long_steps + short_steps
long_pct = (long_steps / total_active * 100) if total_active > 0 else 0
short_pct = (short_steps / total_active * 100) if total_active > 0 else 0
# Update progress bar with detailed info
avg_reward = np.mean(episode_rewards[-10:]) if len(episode_rewards) >= 10 else episode_reward
avg_critic = np.mean(critic_losses[-100:]) if critic_losses else 0
pbar.set_postfix({
'ep': episode_count,
'R': f'{episode_reward:.4f}',
'avg10': f'{avg_reward:.4f}',
'PnL%': f'{pnl_pct:+.2f}',
'L/S': f'{long_pct:.0f}/{short_pct:.0f}',
'fee%': f'{current_fee:.3f}',
'α': f'{agent.alpha.item():.3f}',
})
# ============ EVAL EVERY EPISODE ============
eval_reward, eval_pnl, eval_long_pct = evaluate_agent(agent, valid_env, n_episodes=1)
eval_rewards.append(eval_reward)
# Print detailed episode summary
elapsed = time.time() - start_time
steps_per_sec = (step + 1) / elapsed
print(f"\n{'='*60}")
print(f"📊 Episode {episode_count} Complete | Step {step+1:,}/{total_timesteps:,}")
print(f"{'='*60}")
print(f" 🎮 TRAIN:")
print(f" Reward (DSR): {episode_reward:.4f} | PnL: {pnl_pct:+.2f}%")
print(f" Length: {episode_length} steps | Trades: {num_trades}")
print(f" Avg (last 10): {avg_reward:.4f}")
print(f" 📊 POSITION BALANCE:")
print(f" Long: {long_steps} steps ({long_pct:.1f}%)")
print(f" Short: {short_steps} steps ({short_pct:.1f}%)")
print(f" Neutral: {neutral_steps} steps")
print(f" 💰 FEE CURRICULUM:")
print(f" Current fee: {current_fee:.4f}% (multiplier: {fee_multiplier:.2f})")
print(f" 📈 EVAL (validation):")
print(f" Reward: {eval_reward:.4f} | PnL: {eval_pnl:+.2f}%")
print(f" Long%: {eval_long_pct:.1f}%")
print(f" Avg (last 5): {np.mean(eval_rewards[-5:]):.4f}")
print(f" 🧠 AGENT:")
print(f" Alpha: {agent.alpha.item():.4f}")
print(f" Critic loss: {avg_critic:.5f}")
print(f" ⚡ Speed: {steps_per_sec:.0f} steps/sec")
print(f" 💾 Buffer: {buffer.size:,} transitions")
# Save best train
if episode_reward > best_reward:
best_reward = episode_reward
torch.save({
'actor': agent.actor.state_dict(),
'critic': agent.critic.state_dict(),
'critic_target': agent.critic_target.state_dict(),
'log_alpha': agent.log_alpha,
}, f"{save_path}_best_train.pt")
print(f" 🏆 NEW BEST TRAIN: {best_reward:.4f}")
# Save best eval
if eval_reward > best_eval:
best_eval = eval_reward
torch.save({
'actor': agent.actor.state_dict(),
'critic': agent.critic.state_dict(),
'critic_target': agent.critic_target.state_dict(),
'log_alpha': agent.log_alpha,
}, f"{save_path}_best_eval.pt")
print(f" 🏆 NEW BEST EVAL: {best_eval:.4f}")
# Reset
state = env.reset()
episode_reward = 0
episode_length = 0
# Final save
torch.save({
'actor': agent.actor.state_dict(),
'critic': agent.critic.state_dict(),
'critic_target': agent.critic_target.state_dict(),
'log_alpha': agent.log_alpha,
}, f"{save_path}_final.pt")
total_time = time.time() - start_time
print(f"\n{'='*70}")
print(f" TRAINING COMPLETE")
print(f"{'='*70}")
print(f" Total time: {total_time/60:.1f} min")
print(f" Episodes: {episode_count}")
print(f" Best train reward (DSR): {best_reward:.4f}")
print(f" Best eval reward (DSR): {best_eval:.4f}")
print(f" Avg speed: {total_timesteps/total_time:.0f} steps/sec")
return episode_rewards, eval_rewards
def evaluate_agent(agent, env, n_episodes=1):
"""Run evaluation episodes"""
total_reward = 0
total_pnl = 0
total_long_pct = 0
for _ in range(n_episodes):
state = env.reset()
episode_reward = 0
done = False
while not done:
action = agent.select_action(state, deterministic=True)
state, reward, done, info = env.step(action)
episode_reward += reward
total_reward += episode_reward
final_value = info.get('total_value', 10000)
total_pnl += (final_value / 10000 - 1) * 100
# Calculate long percentage
long_steps = info.get('long_steps', 0)
short_steps = info.get('short_steps', 0)
total_active = long_steps + short_steps
total_long_pct += (long_steps / total_active * 100) if total_active > 0 else 0
return total_reward / n_episodes, total_pnl / n_episodes, total_long_pct / n_episodes
print("✅ Training function ready:")
print(" - Per-episode eval + position tracking")
print(" - DSR reward (risk-adjusted)")
print(" - Fee ramping: 0% → 0.1% after 100k steps")
print(" - Model checkpointing")
print("="*70)
# %%
# ============================================================================
# CELL 9: START TRAINING
# ============================================================================
print("="*70)
print(" STARTING SAC TRAINING")
print("="*70)
# Training parameters
TOTAL_STEPS = 500_000 # 500K steps
WARMUP_STEPS = 10_000 # 10K random warmup
BATCH_SIZE = 256 # Standard batch size
UPDATE_FREQ = 1 # Update every step
FEE_WARMUP = 100_000 # Start fee ramping after 100k steps
FEE_RAMP = 100_000 # Ramp fees over 100k steps (0 → 0.1%)
print(f"\n📋 Configuration:")
print(f" Steps: {TOTAL_STEPS:,}")
print(f" Batch: {BATCH_SIZE}")
print(f" Train env: {len(train_data):,} candles")
print(f" Valid env: {len(valid_data):,} candles")
print(f" Device: {device}")
print(f"\n💰 Fee Curriculum:")
print(f" Steps 0-{FEE_WARMUP:,}: 0% fee (learn basic trading)")
print(f" Steps {FEE_WARMUP:,}-{FEE_WARMUP+FEE_RAMP:,}: Ramp 0%→0.1%")
print(f" Steps {FEE_WARMUP+FEE_RAMP:,}+: Full 0.1% fee")
print(f"\n🎯 Reward: Differential Sharpe Ratio (DSR)")
print(f" - Risk-adjusted returns (not just PnL)")
print(f" - Small values (-0.5 to 0.5) are normal")
print(f" - NOT normalized further")
# Run training with validation eval every episode
episode_rewards, eval_rewards = train_sac(
agent=agent,
env=train_env,
valid_env=valid_env,
buffer=buffer,
total_timesteps=TOTAL_STEPS,
warmup_steps=WARMUP_STEPS,
batch_size=BATCH_SIZE,
update_freq=UPDATE_FREQ,
fee_warmup_steps=FEE_WARMUP,
fee_ramp_steps=FEE_RAMP,
save_path="sac_v9_pytorch"
)
print("\n" + "="*70)
print(" TRAINING COMPLETE")
print("="*70)