monsoon-nlp
commited on
Commit
•
1b20ca9
1
Parent(s):
0fed510
Update README.md
Browse files
README.md
CHANGED
@@ -7,26 +7,35 @@ base_model: monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi
|
|
7 |
model-index:
|
8 |
- name: tinyllama-mixpretrain-uniprottune
|
9 |
results: []
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
-
should probably proofread and complete it, then remove this comment. -->
|
14 |
-
|
15 |
# tinyllama-mixpretrain-uniprottune
|
16 |
|
17 |
-
This
|
|
|
|
|
|
|
18 |
|
19 |
-
|
|
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
-
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
|
29 |
-
More information needed
|
30 |
|
31 |
## Training procedure
|
32 |
|
@@ -42,8 +51,6 @@ The following hyperparameters were used during training:
|
|
42 |
- lr_scheduler_warmup_steps: 10
|
43 |
- num_epochs: 1
|
44 |
|
45 |
-
### Training results
|
46 |
-
|
47 |
|
48 |
|
49 |
### Framework versions
|
|
|
7 |
model-index:
|
8 |
- name: tinyllama-mixpretrain-uniprottune
|
9 |
results: []
|
10 |
+
datasets:
|
11 |
+
- monsoon-nlp/greenbeing-proteins
|
12 |
---
|
13 |
|
|
|
|
|
|
|
14 |
# tinyllama-mixpretrain-uniprottune
|
15 |
|
16 |
+
This is an adapter of the [monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi](https://huggingface.co/monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi)
|
17 |
+
model on the GreenBeing dataset finetuning split (minus maize/corn/*Zea*, which I left for evaluation).
|
18 |
+
|
19 |
+
## Usage
|
20 |
|
21 |
+
```
|
22 |
+
from peft import AutoPeftModelForCausalLM
|
23 |
+
from transformers import AutoTokenizer
|
24 |
|
25 |
+
# this model
|
26 |
+
model = AutoPeftModelForCausalLM.from_pretrained("monsoon-nlp/tinyllama-mixpretrain-uniprottune").to("cuda")
|
27 |
+
# base model for the tokenizer
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("monsoon-nlp/tinyllama-mixpretrain-quinoa-sciphi")
|
29 |
|
30 |
+
inputs = tokenizer("<sequence> Subcellular locations:", return_tensors="pt")
|
31 |
+
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=50)
|
32 |
+
print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0])
|
33 |
+
```
|
34 |
|
35 |
+
Inference Notebook: https://colab.research.google.com/drive/1UTavcVpqWkp4C_GkkS_HxDQ0Orpw43iu?usp=sharing
|
36 |
|
37 |
+
It seems unreliable on the *Zea* proteins. Getting a lot of the same answers for Subcellular locations.
|
38 |
|
|
|
39 |
|
40 |
## Training procedure
|
41 |
|
|
|
51 |
- lr_scheduler_warmup_steps: 10
|
52 |
- num_epochs: 1
|
53 |
|
|
|
|
|
54 |
|
55 |
|
56 |
### Framework versions
|