monologg commited on
Commit
a74b990
1 Parent(s): 566e1e7

docs: update readme

Browse files
Files changed (1) hide show
  1. README.md +52 -0
README.md ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ko
3
+ ---
4
+
5
+ # KoELECTRA v3 (Base Discriminator)
6
+
7
+ Pretrained ELECTRA Language Model for Korean (`koelectra-base-v3-discriminator`)
8
+
9
+ For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md).
10
+
11
+ ## Usage
12
+
13
+ ### Load model and tokenizer
14
+
15
+ ```python
16
+ >>> from transformers import ElectraModel, ElectraTokenizer
17
+
18
+ >>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v3-discriminator")
19
+ >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator")
20
+ ```
21
+
22
+ ### Tokenizer example
23
+
24
+ ```python
25
+ >>> from transformers import ElectraTokenizer
26
+ >>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator")
27
+ >>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
28
+ ['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]']
29
+ >>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]'])
30
+ [2, 11229, 29173, 13352, 25541, 4110, 7824, 17788, 18, 3]
31
+ ```
32
+
33
+ ## Example using ElectraForPreTraining
34
+
35
+ ```python
36
+ import torch
37
+ from transformers import ElectraForPreTraining, ElectraTokenizer
38
+
39
+ discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-v3-discriminator")
40
+ tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator")
41
+
42
+ sentence = "나는 방금 밥을 먹었다."
43
+ fake_sentence = "나는 내일 밥을 먹었다."
44
+
45
+ fake_tokens = tokenizer.tokenize(fake_sentence)
46
+ fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
47
+
48
+ discriminator_outputs = discriminator(fake_inputs)
49
+ predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
50
+
51
+ print(list(zip(fake_tokens, predictions.tolist()[1:-1])))
52
+ ```