monai
medical
katielink's picture
restructure readme to match updated template
3fbe98e
raw
history blame
3.52 kB
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.3.7",
"changelog": {
"0.3.7": "restructure readme to match updated template",
"0.3.6": "enhance readme with details of model training",
"0.3.5": "update to use monai 1.0.1",
"0.3.4": "enhance readme on commands example",
"0.3.3": "fix license Copyright error",
"0.3.2": "improve multi-gpu logging",
"0.3.1": "add multi-gpu evaluation config",
"0.3.0": "update license files",
"0.2.0": "unify naming",
"0.1.1": "disable image saving during evaluation",
"0.1.0": "complete the model package",
"0.0.1": "initialize the model package structure"
},
"monai_version": "1.0.1",
"pytorch_version": "1.13.0",
"numpy_version": "1.21.2",
"optional_packages_version": {
"nibabel": "4.0.1",
"pytorch-ignite": "0.4.9"
},
"task": "Decathlon spleen segmentation",
"description": "A pre-trained model for volumetric (3D) segmentation of the spleen from CT image",
"authors": "MONAI team",
"copyright": "Copyright (c) MONAI Consortium",
"data_source": "Task09_Spleen.tar from http://medicaldecathlon.com/",
"data_type": "nibabel",
"image_classes": "single channel data, intensity scaled to [0, 1]",
"label_classes": "single channel data, 1 is spleen, 0 is everything else",
"pred_classes": "2 channels OneHot data, channel 1 is spleen, channel 0 is background",
"eval_metrics": {
"mean_dice": 0.96
},
"intended_use": "This is an example, not to be used for diagnostic purposes",
"references": [
"Xia, Yingda, et al. '3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training. arXiv preprint arXiv:1811.12506 (2018). https://arxiv.org/abs/1811.12506.",
"Kerfoot E., Clough J., Oksuz I., Lee J., King A.P., Schnabel J.A. (2019) Left-Ventricle Quantification Using Residual U-Net. In: Pop M. et al. (eds) Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40"
],
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "hounsfield",
"modality": "CT",
"num_channels": 1,
"spatial_shape": [
96,
96,
96
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "image"
}
}
},
"outputs": {
"pred": {
"type": "image",
"format": "segmentation",
"num_channels": 2,
"spatial_shape": [
96,
96,
96
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "background",
"1": "spleen"
}
}
}
}
}