|
{ |
|
"imports": [ |
|
"$import glob", |
|
"$import os", |
|
"$import torch", |
|
"$import numpy as np" |
|
], |
|
"bundle_root": "/workspace/bundle/endoscopic_tool_segmentation", |
|
"ckpt_dir": "$@bundle_root + '/models'", |
|
"output_dir": "$@bundle_root + '/eval'", |
|
"dataset_dir": "/workspace/data/endoscopic_tool_dataset", |
|
"images": "$list(sorted(glob.glob(os.path.join(@dataset_dir,'train', '*[!seg].jpg'))))", |
|
"labels": "$[x.replace('.jpg', '_seg.jpg') for x in @images]", |
|
"val_images": "$list(sorted(glob.glob(os.path.join(@dataset_dir,'valid', '*[!seg].jpg'))))", |
|
"val_labels": "$[x.replace('.jpg', '_seg.jpg') for x in @val_images]", |
|
"val_interval": 1, |
|
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')", |
|
"network_def": { |
|
"_target_": "FlexibleUNet", |
|
"in_channels": 3, |
|
"out_channels": 2, |
|
"backbone": "efficientnet-b0", |
|
"spatial_dims": 2, |
|
"pretrained": true, |
|
"is_pad": false |
|
}, |
|
"network": "$@network_def.to(@device)", |
|
"loss": { |
|
"_target_": "DiceLoss", |
|
"include_background": false, |
|
"to_onehot_y": true, |
|
"softmax": true |
|
}, |
|
"optimizer": { |
|
"_target_": "torch.optim.Adam", |
|
"params": "$@network.parameters()", |
|
"lr": 0.0001 |
|
}, |
|
"train": { |
|
"deterministic_transforms": [ |
|
{ |
|
"_target_": "LoadImaged", |
|
"keys": [ |
|
"image", |
|
"label" |
|
] |
|
}, |
|
{ |
|
"_target_": "ToTensord", |
|
"keys": [ |
|
"image", |
|
"label" |
|
] |
|
}, |
|
{ |
|
"_target_": "AsChannelFirstd", |
|
"keys": "image" |
|
}, |
|
{ |
|
"_target_": "AddChanneld", |
|
"keys": "label" |
|
}, |
|
{ |
|
"_target_": "Resized", |
|
"keys": [ |
|
"image", |
|
"label" |
|
], |
|
"spatial_size": [ |
|
736, |
|
480 |
|
], |
|
"mode": [ |
|
"bilinear", |
|
"nearest" |
|
] |
|
}, |
|
{ |
|
"_target_": "ScaleIntensityd", |
|
"keys": [ |
|
"image", |
|
"label" |
|
] |
|
} |
|
], |
|
"random_transforms": [ |
|
{ |
|
"_target_": "RandRotated", |
|
"keys": [ |
|
"image", |
|
"label" |
|
], |
|
"range_x": "$np.pi", |
|
"prob": 0.8, |
|
"mode": [ |
|
"bilinear", |
|
"nearest" |
|
] |
|
}, |
|
{ |
|
"_target_": "RandZoomd", |
|
"keys": [ |
|
"image", |
|
"label" |
|
], |
|
"min_zoom": 0.8, |
|
"max_zoom": 1.2, |
|
"prob": 0.2, |
|
"mode": [ |
|
"bilinear", |
|
"nearest" |
|
] |
|
} |
|
], |
|
"preprocessing": { |
|
"_target_": "Compose", |
|
"transforms": "$@train#deterministic_transforms + @train#random_transforms" |
|
}, |
|
"dataset": { |
|
"_target_": "CacheDataset", |
|
"data": "$[{'image': i, 'label': l} for i, l in zip(@images, @labels)]", |
|
"transform": "@train#preprocessing", |
|
"cache_rate": 0.1, |
|
"num_workers": 4 |
|
}, |
|
"dataloader": { |
|
"_target_": "DataLoader", |
|
"dataset": "@train#dataset", |
|
"batch_size": 8, |
|
"shuffle": true, |
|
"num_workers": 4 |
|
}, |
|
"inferer": { |
|
"_target_": "SimpleInferer" |
|
}, |
|
"handlers": [ |
|
{ |
|
"_target_": "ValidationHandler", |
|
"validator": "@validate#evaluator", |
|
"epoch_level": true, |
|
"interval": "@val_interval" |
|
}, |
|
{ |
|
"_target_": "StatsHandler", |
|
"tag_name": "train_loss", |
|
"output_transform": "$monai.handlers.from_engine(['loss'], first=True)" |
|
}, |
|
{ |
|
"_target_": "TensorBoardStatsHandler", |
|
"log_dir": "@output_dir", |
|
"tag_name": "train_loss", |
|
"output_transform": "$monai.handlers.from_engine(['loss'], first=True)" |
|
} |
|
], |
|
"key_metric": { |
|
"train_iou": { |
|
"_target_": "MeanIoUHandler", |
|
"include_background": false, |
|
"reduction": "mean", |
|
"output_transform": "$monai.handlers.from_engine(['pred', 'label'])" |
|
} |
|
}, |
|
"postprocessing": { |
|
"_target_": "Compose", |
|
"transforms": [ |
|
{ |
|
"_target_": "AsDiscreted", |
|
"argmax": [ |
|
true, |
|
false |
|
], |
|
"to_onehot": [ |
|
2, |
|
2 |
|
], |
|
"keys": [ |
|
"pred", |
|
"label" |
|
] |
|
} |
|
] |
|
}, |
|
"trainer": { |
|
"_target_": "SupervisedTrainer", |
|
"max_epochs": 60, |
|
"device": "@device", |
|
"train_data_loader": "@train#dataloader", |
|
"network": "@network", |
|
"loss_function": "@loss", |
|
"optimizer": "@optimizer", |
|
"inferer": "@train#inferer", |
|
"postprocessing": "@train#postprocessing", |
|
"key_train_metric": "@train#key_metric", |
|
"train_handlers": "@train#handlers" |
|
} |
|
}, |
|
"validate": { |
|
"preprocessing": { |
|
"_target_": "Compose", |
|
"transforms": "%train#deterministic_transforms" |
|
}, |
|
"dataset": { |
|
"_target_": "CacheDataset", |
|
"data": "$[{'image': i, 'label': l} for i, l in zip(@val_images, @val_labels)]", |
|
"transform": "@validate#preprocessing", |
|
"cache_rate": 0.1 |
|
}, |
|
"dataloader": { |
|
"_target_": "DataLoader", |
|
"dataset": "@validate#dataset", |
|
"batch_size": 8, |
|
"shuffle": false, |
|
"num_workers": 4 |
|
}, |
|
"inferer": { |
|
"_target_": "SimpleInferer" |
|
}, |
|
"postprocessing": { |
|
"_target_": "Compose", |
|
"transforms": "%train#postprocessing" |
|
}, |
|
"handlers": [ |
|
{ |
|
"_target_": "StatsHandler", |
|
"iteration_log": false |
|
}, |
|
{ |
|
"_target_": "TensorBoardStatsHandler", |
|
"log_dir": "@output_dir", |
|
"iteration_log": false |
|
}, |
|
{ |
|
"_target_": "CheckpointSaver", |
|
"save_dir": "@ckpt_dir", |
|
"save_dict": { |
|
"model": "@network" |
|
}, |
|
"save_key_metric": true, |
|
"key_metric_filename": "model.pt" |
|
} |
|
], |
|
"additional_metrics": { |
|
"val_mean_dice": { |
|
"_target_": "MeanDice", |
|
"include_background": false, |
|
"reduction": "mean", |
|
"output_transform": "$monai.handlers.from_engine(['pred', 'label'])" |
|
} |
|
}, |
|
"key_metric": { |
|
"val_iou": { |
|
"_target_": "MeanIoUHandler", |
|
"include_background": false, |
|
"reduction": "mean", |
|
"output_transform": "$monai.handlers.from_engine(['pred', 'label'])" |
|
} |
|
}, |
|
"evaluator": { |
|
"_target_": "SupervisedEvaluator", |
|
"device": "@device", |
|
"val_data_loader": "@validate#dataloader", |
|
"network": "@network", |
|
"inferer": "@validate#inferer", |
|
"postprocessing": "@validate#postprocessing", |
|
"key_val_metric": "@validate#key_metric", |
|
"additional_metrics": "@validate#additional_metrics", |
|
"val_handlers": "@validate#handlers" |
|
} |
|
}, |
|
"training": [ |
|
"$monai.utils.set_determinism(seed=0)", |
|
"$setattr(torch.backends.cudnn, 'benchmark', True)", |
|
"$@train#trainer.run()" |
|
] |
|
} |
|
|