monai
medical
katielink's picture
update license files
c8da237
raw
history blame
3.58 kB
{
"imports": [
"$import glob",
"$import os"
],
"bundle_root": "/workspace/bundle/endoscopic_tool_segmentation",
"output_dir": "$@bundle_root + '/eval'",
"dataset_dir": "/workspace/data/endoscopic_tool_dataset",
"datalist": "$list(sorted(glob.glob(os.path.join(@dataset_dir,'test', '*[!seg].jpg'))))",
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
"network_def": {
"_target_": "FlexibleUNet",
"in_channels": 3,
"out_channels": 2,
"backbone": "efficientnet-b0",
"spatial_dims": 2,
"pretrained": true,
"is_pad": false
},
"network": "$@network_def.to(@device)",
"preprocessing": {
"_target_": "Compose",
"transforms": [
{
"_target_": "LoadImaged",
"keys": [
"image"
]
},
{
"_target_": "ToTensord",
"keys": [
"image"
]
},
{
"_target_": "AsChannelFirstd",
"keys": [
"image"
]
},
{
"_target_": "Resized",
"keys": [
"image"
],
"spatial_size": [
736,
480
],
"mode": [
"bilinear"
]
},
{
"_target_": "ScaleIntensityd",
"keys": [
"image"
]
}
]
},
"dataset": {
"_target_": "Dataset",
"data": "$[{'image': i} for i in @datalist]",
"transform": "@preprocessing"
},
"dataloader": {
"_target_": "DataLoader",
"dataset": "@dataset",
"batch_size": 1,
"shuffle": false,
"num_workers": 4
},
"inferer": {
"_target_": "SimpleInferer"
},
"postprocessing": {
"_target_": "Compose",
"transforms": [
{
"_target_": "AsDiscreted",
"argmax": true,
"to_onehot": 2,
"keys": [
"pred"
]
},
{
"_target_": "Lambdad",
"keys": [
"pred"
],
"func": "$lambda x : x[1:]"
},
{
"_target_": "SaveImaged",
"keys": "pred",
"meta_keys": "pred_meta_dict",
"output_dir": "@output_dir",
"output_ext": ".png",
"scale": 255,
"squeeze_end_dims": true
}
]
},
"handlers": [
{
"_target_": "CheckpointLoader",
"load_path": "$@bundle_root + '/models/model.pt'",
"load_dict": {
"model": "@network"
}
},
{
"_target_": "StatsHandler",
"iteration_log": false
}
],
"evaluator": {
"_target_": "SupervisedEvaluator",
"device": "@device",
"val_data_loader": "@dataloader",
"network": "@network",
"inferer": "@inferer",
"postprocessing": "@postprocessing",
"val_handlers": "@handlers"
},
"evaluating": [
"$setattr(torch.backends.cudnn, 'benchmark', True)",
"$@evaluator.run()"
]
}