|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
|
"version": "0.1.5", |
|
"changelog": { |
|
"0.1.5": "Fixed duplication of input output format section", |
|
"0.1.4": "Changed Readme", |
|
"0.1.3": "Change input_dim from 229 to 299", |
|
"0.1.2": "black autofix format and add name tag", |
|
"0.1.1": "update license files", |
|
"0.1.0": "complete the model package" |
|
}, |
|
"monai_version": "1.0.0", |
|
"pytorch_version": "1.12.1", |
|
"numpy_version": "1.21.2", |
|
"optional_packages_version": { |
|
"torchvision": "0.13.1" |
|
}, |
|
"name": "Breast density classification", |
|
"task": "Breast Density Classification", |
|
"description": "A pre-trained model for classifying breast images (mammograms) ", |
|
"authors": "Center for Augmented Intelligence in Imaging, Mayo Clinic Florida", |
|
"copyright": "Copyright (c) Mayo Clinic", |
|
"data_source": "Mayo Clinic ", |
|
"data_type": "Jpeg", |
|
"image_classes": "three channel data, intensity scaled to [0, 1]. A single grayscale is copied to 3 channels", |
|
"label_classes": "four classes marked as [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0] and [0, 0, 0, 1] for the classes A, B, C and D respectively.", |
|
"pred_classes": "One hot data", |
|
"eval_metrics": { |
|
"accuracy": 0.96 |
|
}, |
|
"intended_use": "This is an example, not to be used for diagnostic purposes", |
|
"references": [ |
|
"Gupta, Vikash, et al. A multi-reconstruction study of breast density estimation using Deep Learning. arXiv preprint arXiv:2202.08238 (2022)." |
|
], |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "magnitude", |
|
"modality": "Mammogram", |
|
"num_channels": 3, |
|
"spatial_shape": [ |
|
299, |
|
299 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": false, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "image", |
|
"format": "labels", |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"num_channels": 4, |
|
"spatial_shape": [ |
|
1, |
|
4 |
|
], |
|
"is_patch_data": false, |
|
"channel_def": { |
|
"0": "A", |
|
"1": "B", |
|
"2": "C", |
|
"3": "D" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|